
Opportunities of Scale, Part 2 

 

Computer Vision 

James Hays, Brown 

 Many slides from James Hays, Alyosha Efros, and Derek Hoiem Graphic from Antonio Torralba 



Recap 

Opportunities of Scale: Data-driven methods 

 

• Monday 

– Scene completion 

– Im2gps 

• Today 

– Recognition via Tiny Images 

– More recognition by association 
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Hopefully,  If you have enough images, the dataset will contain very 
similar images that you can find with simple matching methods.  



… 200 total 



Graph cut + Poisson blending 



im2gps (Hays & Efros, CVPR 2008) 

6 million geo-tagged Flickr images 

http://graphics.cs.cmu.edu/projects/im2gps/ 

http://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
http://graphics.cs.cmu.edu/projects/im2gps/


Tiny Images 

 80 million tiny images: a large dataset for non-
parametric object and scene recognition 
Antonio Torralba, Rob Fergus and William T. 
Freeman. PAMI 2008. 

http://groups.csail.mit.edu/vision/TinyImages/ 







Human Scene Recognition 



Humans vs. Computers:  
Car-Image Classification 

Humans for 32 pixel tall images 
Various computer vision 

algorithms for full resolution 

images 



Powers of 10 
Number of images on my hard drive:     104 

 

Number of images seen during my first 10 years:  108  
(3 images/second * 60 * 60 * 16 * 365 * 10 = 630720000) 

Number of images seen by all humanity:    1020 

106,456,367,669 humans1 * 60 years * 3 images/second * 60 * 60 * 16 * 365 =  

1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx 

 

Number of photons in the universe:     1088 

Number of all 32x32 images:     107373 

256 32*32*3 ~ 107373 



Scenes are unique 



But not all scenes are so original 
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A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008 
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A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008 
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Application: Automatic Colorization 
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Recognition by Association 

 

 

Malisiewicz and Efros (CVPR 2008) 

Rather than categorizing objects, associate them with stored 
examples of objects and transfer the associated labels. 

http://www.cs.cmu.edu/~tmalisie/projects/cvpr08/


Training procedure 

• Learn a region similarity 
measure from hand-segmented 
objects in LabelMe 

 

• Similarity features 
– Shape: region mask, pixel area, 

bounding box size  

– Texture: normalized texton 
histogram 

– Color: mean RGB, std RGB, color 
histogram 

– Position: coarse 8x8 image mask, 
coords of top/bottom pixels 

 



Training procedure 

• Learn a distance/similarity measure for each region 

– Minimize distance to K most similar examples from same 
category 

– Maximize distance to examples from other categories 

distance weights 

distance measures 

Set to 1 for K nearest examples Hinge Loss 



Learned Similarity Measure 
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Learned Similarity Measure 



Testing procedure 

• Create multiple segmentations (MeanShift + 
Ncuts) 

• Find similar object regions in training set; each 
votes for the object label 

• What about bad segments? 

– Most of the time, they don’t match any objects in 
the training set 

– Consider only associations with distance < 1 

 

 



 



Automatic Parses 



Summary 

 

• With billions of images on the web, it’s often possible to find a 
close nearest neighbor 

 

• In such cases, we can shortcut hard problems by “looking up” 
the answer, stealing the labels from our nearest neighbor 

 

• For example, simple (or learned) associations can be used to 
synthesize background regions, colorize, or recognize objects 

 

 

 


