Context and Scene Parsing

Computer Vision CS 143, Brown

James Hays

Many Slides from Svetlana Lazebnik

Recap: Context and Spatial Layout

- Contextual Reasoning: making a decision based on more than *local* image evidence.
- Numerous sources of context can be exploited to improve scene understanding
- We discussed spatial layout in particular
 - "Geometric Context" method of Hoiem et al.
 - Geometry as a single view *recognition* problem, rather than a multi-view problem.

Today: Scene Parsing

- Label every pixel of an image with a category label (usually with the help of contextual reasoning).
- We'll look at the "non parametric" approach of Tighe and Lazebnik

Closed-universe recognition

Output

Closed-universe datasets

- Small amount of data
- Static datasets
- Limited variation
- Full annotation

Open-universe datasets

- Large amount of data
- Evolving datasets
- Wide variation
- Incomplete annotation

Open-universe recognition

Evolving training set

<u>http://labelme.csail.mit.edu/</u>

Open-universe recognition

Open-universe recognition

Unbalanced data distribution

Potential solution: Lazy learning

Test image

road

LARGE-SCALE NONPARAMETRIC IMAGE PARSING

Joseph Tighe and Svetlana Lazebnik ECCV 2010

Step 1: Scene-level matching

Superpixel features

	Mask of superpixel shape over its bounding box (8×8)	64
Shape	Bounding box width/height relative to image width/height	2
	Superpixel area relative to the area of the image	1
Location	Mask of superpixel shape over the image	64
	Top height of bounding box relative to image height	1
	Texton histogram, dilated texton histogram	100×2
Texture/SIFT	SIFT histogram, dilated SIFT histogram	100×2
	Left/right/top/bottom boundary SIFT histogram	100×4
Color	RGB color mean and std. dev.	3×2
	Color histogram (RGB, 11 bins per channel), dilated hist.	33×2
Appearance	Color thumbnail (8×8)	192
	Masked color thumbnail	192
	Grayscale gist over superpixel bounding box	320

Superpixels (Felzenszwalb & Huttenlocher, 2004)

Pixel Area (size)

Absolute mask (location)

Sidewalk

Sidewalk

Snow

Color histogram

Region-level likelihoods

of ith region

Nonparametric estimate of class-conditional densities for each class c and feature type k:

$$\hat{P}(f_{k}(r_{i}) \mid c) = \frac{\#(N(f_{k}(r_{i})), c)}{\#(D, c)} \xrightarrow{\text{Features of class c within some radius of } r_{i}}{\text{Total features of class c in the dataset}}$$

Per-feature likelihoods combined via Naïve Bayes:

$$\hat{P}(r_i \mid c) = \prod_{\text{features } k} \hat{P}(f_k(r_i) \mid c)$$

Region-level likelihoods

Road

Window

Step 3: Global image labeling

 Compute a global image labeling by optimizing a Markov random field (MRF) energy function:

Efficient approximate minimization using α -expansion (Boykov et al., 2002)

Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov random field (MRF) energy function:

Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov random field (MRF) energy function:

Datasets

Training imagesTest imagesLabelsSIFT Flow (Liu et al., 2009)2,48820033Barcelona14,871279170LabelMe+SUN50,424300232

Per-class classification rates

Results on SIFT Flow dataset

Results on LM+SUN dataset

Summary so far

A lazy learning method for image parsing:

- Global scene matching
- Superpixel-level matching
- MRF optimization
- Challenges
 - Indoor images are hard!
 - We do well on "stuff" but not on "things"

We get the "stuff" but not the "things"

FINDING THINGS: IMAGE PARSING WITH REGIONS AND PER-EXEMPLAR DETECTORS

Joseph Tighe and Svetlana Lazebnik CVPR 2013

Superparsing Result

Detector Based Parsing Result

To get the "things" use detectors

Ladicky et al. used detector output coupled with bounding box based foreground/background segmentation to improve performance on things

Result without detections

Set of detections

Final Result

Ľubor Ladický, Paul Sturgess, Karteek Alahari, Chris Russell, Philip H.S. Torr What, Where & How Many? Combining Object Detectors and CRFs, ECCV 2010

Problems with this approach

- The mask for bounding boxes is obtained by an automatic segmentation, which can fail
- The models must be pre-trained and cannot adapt to new data easily
- There is little flexibility for objects that take many forms

Per-exemplar detectors

- For each instance of a class: train SVM based on HOG features
- Negative examples are taken from all images that do not contain the class

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond . In ICCV, 2011

- Retrieve a set of similar images using global image descriptors
- Train per-exemplar detectors for "things" in retrieval set
- Run trained detectors on query and transfer weighted masked for all positive detections

Retrieval set for

Retrieval set for

59

window

- Retrieve a set of similar images using global image descriptors
- Train per-exemplar detectors for each object in retrieval set
- Run trained detectors on query and transfer weighted masked for all positive detections

No. - Internet and the second

- Retrieve a set of similar images using global image descriptors
- Train per-exemplar detectors for "things" in retrieval set
- Run trained detectors on query and transfer weighted masks for all positive detections

building

car

church

arass

lsea

💻 sky

tree

fence

55% (23%)

Detector-based Parsing Result

45% (26%)

Detector Based Parsing Result

air conditioner

awning

basket

55% (23%)

61% (31%)

Detector Based Parsing Result

19% (25%)

52% (31%)

Detector Based Parsing Result

Detector Based Parsing Result

12% (7%)

building cabinet car ceiling chair cupboard 📰 door floor garagedoor keyboard microwave 💴 painting road screen sidewalk skγ stove 🗖 table wall washing machine window

24% (10%)

Conclusion

- Image parsing with superpixels
 - Scene-level matching
 - Superpixel-level matching
 - MRF optimization
- □ Getting "things" with detectors
 - Use per-exemplar detectors of Malisiewicz et al.