Context and Scene Parsing

Computer Vision
CS 143, Brown

James Hays



Recap: Context and Spatial Layout

* Contextual Reasoning: making a decision
based on more than local image evidence.

* Numerous sources of context can be exploited
to improve scene understanding

 We discussed spatial layout in particular

— “Geometric Context” method of Hoiem et al.

— Geometry as a single view recognition problem,
rather than a multi-view problem.



Today: Scene Parsing

* Label every pixel of an image with a category
label (usually with the help of contextual

reasoning).

 We'll look at the “non parametric” approach
of Tighe and Lazebnik



Closed-universe recognition

Fixed, pre-defined set of classes
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Closed-universe datasets Open-universe datasets

* Small amount of data * Large amount of data
* Static datasets * Evolving datasets
* Limited variation * Wide variation

* Full annotation * Incomplete annotation



Open-universe recognition

There are 754152 Iabelled objects
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http://labelme.csail.mit.edu/
http://labelme.csail.mit.edu/tool.html

Open-universe recognition

Very large/open-ended set of classes
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Open-universe recognition

Very large/open-ended set of clqsses
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Potential solution:
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LARGE-SCALE NONPARAMETRIC IMAGE PARSING

Joseph Tighe and Svetlana Lazebnik

ECCV 2010
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Step 1: Scene-level matching

Color Hist Spatial Pyramid Gist
ofor Histogram (Lazebnik et al., 2006) (Oliva & Torralba, 2001)
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Step 2: Region-level matching

Superpixels
(Felzenszwalb & Huttenlocher, 2004)

Superpixel features

Mask of superpixel shape over its bounding box (8 x 8)

64

Shape Bounding box width/height relative to image width /height|2
Superpixel area relative to the area of the image 1
Location Mask of superpixel shape over the image 64
Top height of bounding box relative to image height 1
Texton histogram, dilated texton histogram 100 x 2
Texture/SIFT|SIFT histogram, dilated SIFT histogram 100 x 2
Left/right /top/bottom boundary SIFT histogram 100 x 4
Color RGB color mean and std. dev. 3 x2
Color histogram (RGDB, 11 bins per channel), dilated hist. |33 x 2
Color thumbnail (8 x 8) 192
Appearance |Masked color thumbnail 192
Grayscale gist over superpixel bounding box 320




Step 2: Region-level matching

Pixel Area (size)



Step 2: Region-level matching
—

Absolute mask
(location)




Step 2: Region-level matching

Texture



Step 2: Region-level matching
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Region-level likelihoods

Nonparametric estimate of class-conditional densities for
each class ¢ and feature type k:

Features of class ¢ within
#(N ( fk (rl))’C) some radius of r;
# D Total features of class ¢
y C in the dataset

FA)(fk(ri)‘C):

kth feature type
of ith region

Per-feature likelihoods combined via Naive Bayes:

P(r.lc)= []P(f.(r)|c)

features k



Region-level likelihoods

Crosswalk




Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov
random field (MRF) energy function:

E(c):Z—Iog\L(ri,ci)} + 12\5[@;&%]?(%0;)}

|

Vector of Regions Likelihood score for Neighboring Smoothing Co-occurrence
region region r; and label c; regions penalty penalty
labels

Efficient approximate
minimization using oL-expansion
(Boykov et al., 2002)




Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov
random field (MRF) energy function:

E(c):Z—Iog\L(ri,ci)’ + AZ§[0i¢Cj]§o(ci,0j)}

|

Vector of Regions Likelihood score for Neighboring Smoothing Co-occurrence
region region r; and label c; regions penalty penalty

labels




Step 3: Global image labeling
—

1 Compute a global image labeling by optimizing a Markov
random field (MRF) energy function:

E(c):Z—Iog\L(ri,ci), + ﬁz\ﬁ[ci;tcj]\go(ci,cj)l

|

Vector of Regions Likelihood score for Neighboring Smoothing Co-occurrence
region region r; and label c; regions penalty penalty
labels

Maximum likelihood
Original image labeling Edge penalties MRF labeling

sky

10

g

G

4

2




Datasets
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Per-class classification rates
—
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Results on SIFT Flow dataset

Query Ground Initial Edge Final
Truth Labels Labeling Penalties Labeling
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Results on LM+SUN dataset

Query Ground Initial Final
Truth Labels Labeling Labeling
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Summary so far

A lazy learning method for image parsing:
Global scene matching
Superpixel-level matching

MRF optimization
Challenges

Indoor images are hard!

We do well on “stuff” but not on “things”



We get the “stuff” but not the “things”
—
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FINDING THINGS: IMAGE PARSING WITH REGIONS
AND PER-EXEMPLAR DETECTORS

Joseph Tighe and Svetlana Lazebnik
CVPR 2013
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To get the “things” use detectors
—

01 Ladicky et al. used detector output coupled with
bounding box based foreground /background
segmentation to improve performance on things

Void. Column Sign . Fence- Pedestrian. Cyclist. Road. Building. Sky. Tree. Sidewalk. Car-
" A ,(" J L

i , t

Result without _ _
detections Set of detections Final Result

Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, Philip H.S. Torr
What, Where & How Many? Combining Object Detectors and CRFs, ECCV 2010



Problems with this approach
—

1 The mask for bounding boxes is obtained by an automatic
segmentation, which can fail

1 The models must be pre-trained and cannot adapt to new
data easily

o1 There is little flexibility for objects that take many forms




Per-exemplar detectors
—

1 For each instance of a class: train SVM based on
HOG features

7 Negative examples are taken from all images that
do not contain the class

Category-SVM Exemplar-SVM 1 Exemplar-SVM 2 Exemplar-SVM N
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Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of
Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011



.;

<
_—

/4

~-SVMs

Exemplar

uonejuaTag

Lpwoan  [Papo (1€

L=

Category-SVM

RIRp-RION

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of Exemplar-SVMs

.InICCV, 2011

for Object Detection and Beyond



Per-exemplar detectors for parsing
N

11 Retrieve a set of similar images using global image
descriptors

O Train per-exemplar detectors for “things” in
retrieval set

O Run trained detectors on query and transfer
weighted masked for all positive detections
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Per-exemplar detectors for parsing
N

O Retrieve a set of similar images using global image
descriptors

0 Train per-exemplar detectors for each object in
retrieval set

O Run trained detectors on query and transfer
weighted masked for all positive detections



Per-exemplar detectors for parsing
]




Per-exemplar detectors for parsing










Per-exemplar detectors for parsing
|

O Retrieve a set of similar images using global image
descriptors

O Train per-exemplar detectors for “things” in
retrieval set

71 Run trained detectors on query and transfer
weighted masks for all positive detections



Per-exemplar detectors for parsing
]




Superparsing Result
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Superparsing Result
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Superparsing Result Detector Based Parsing Result
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Conclusion

Image parsing with superpixels
Scene-level matching
Superpixel-level matching
MRF optimization

Getting “things” with detectors

Use per-exemplar detectors of Malisiewicz et al.



