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Chaplin, Modern Times, 1936



[A Bucket of Water and a Glass Matte: Special Effects in Modern Times, bonus feature on The Criterion Collection set]



Multi-view geometry problems

Structure: Given projections of the same 3D point in two or
more images, compute the 3D coordinates of that point

Camera 1 Camera 2 \
Rl’tl \

RZ’tZ \ R3,t3 Slide credit:

Noah Snavely

Camera 3



Multi-view geometry problems

e Motion: Given a set of corresponding points in two or more
images, compute the camera parameters

\
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Camera 1
? Camera 2
Rl’tl "

Roty, 7

? Camera 3

R3 y t3 Slide credit:

Noah Snavely



Multi-view geometry problems

e Stereo correspondence: Given a point in one of the images,
where could its corresponding points be in the other images?

Camera 1 Camera. 2
Rl,tl

R t lide credit:
Rz,tz 313 > '

Noah Snavely

Camera 3



Multi-view geometry problems

e Optical flow: Given two images, find the location of a world point
in a second close-by image with no camera info.
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Fundamental matrix

Let X be a point in left image, x’in right image

Epipolar relation
* X maps to epipolar line I’
« X’maps to epipolar line |
Epipolar mapping described by a 3x3 matrix F:
" =Fx
[ =FTx'

It follows that: x'Fx = 0



Fundamental matrix

This matrix F iIs called

 the “Essential Matrix”
— when image intrinsic parameters are known

« the “Fundamental Matrix”
— more generally (uncalibrated case)

Can solve for F from point correspondences
« Each (x, x’) pair gives one linear equation in entries of F

x'Fx =0

* F has 9 entries, but really only 7 degrees of freedom.

« With 8 points it is simple to solve for F, but it is also possible
with 7. See Marc Pollefey’s notes for a nice tutorial



http://cs.unc.edu/~marc/tutorial/node53.html

Stereo image rectification




Stereo image rectification

Reproject image planes

onto a common plane
arallel to the line
etween camera centers

Pixel motion is horizontal
after this transformation

Two homographies (3x3
transform), one for each
iInput image reprojection

C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




Correspondence problem

Multiple match
° Hypothesis1 hypOtheSES
© Hypothesis 2 . .
satisfy epipolar
constraint, but
which is correct?

O Hypothesis 3

Right image

Figure from Gee & Cipolla 1999



Dense correspondence search
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For each epipolar line:
For each pixel / window in the left image:

« Compare with every pixel / window on same
epipolar line in right image

* Pick position with minimum match cost (e.g., SSD,
normalized correlation)

Adapted from Li Zhang
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Source: Andrew Zisserman



Correspondence problem

=

epipolar

Neighborhoods of corresponding points are
similar in intensity patterns.

Source: Andrew Zisserman



Correlation-based window matching




Correlation-based window matching

3 .- - left image band (x)
s .- g right image band (x/)




Correlation-based window matching

right image band (x’)

Cross
correlation

disparity = x/ - x






Correlatlon based window matching

/ target region

b |i left image band (x)
| j right image band (x/)

Cross

/\ /\/\ J\ correlation
0 A I ann / Textureless regions are
/ \/J v \/ \W“ non-distinct; high

ambiguity for matches.




Effect of window size

P’

L B .-..I‘I-I -

B I L =
L5 R R

W=3 W =20

g =

i -\#-E;r_J F"' 1-"

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same dispatrity.

Figures from Li Zhang



Problem: Occlusion

- Uniqueness says “up to match” per pixel
- When is there no match?

Occluded pixels



Disparity gradient constraint

- Assume piecewise continuous surface, so want disparity
estimates to be locally smooth

Left image Right image

Epipolar
line

\ o " \ e o ?

Given matches e and o, point o in the left image

must match point 1 in the right image. Point 2
would exceed the disparity gradient limit.

Figure from Gee &
Cipolla 1999



Ordering constraint

- Points on same surface (opaque object) will be in same
order in both views

e Satisfies ordering
constraint

Left image Right image 0:

Figure from Gee &
Cipolla 1999



Ordering constraint

« Won't always hold, e.g. consider transparent object, or
an occluding surface

o Violates ordering
constraint

Left image Right image

Figures from Forsyth & Ponce



Stereo — Tsukuba test scene (now old)




Results with window search

Window-based matching ‘Ground truth’
(best window size)



Better solutions

- Beyond individual correspondences to estimate
disparities:
- Optimize correspondence assignments jointly

- Scanline at a time (DP)
- Full 2D grid (graph cuts)



Scanline stereo

Try to coherently match pixels on the entire scanline
Different scanlines are still optimized independently

Right iImage
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“Shortest paths” for scan-line stereo

Left image N

Right image

Right
occlusion

one-to-one
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Can be implemented with dynamic programming
Ohta & Kanade 85, Cox et al. ’96, Intille & Bobick, ‘01

Slide credit: Y. Boykov



Coherent stereo on 2D grid
- Scanline stereo generates streaking artifacts

- Can’t use dynamic programming to find spatially
coherent disparities/ correspondences on a 2D grid



Stereo as energy minimization

F=S" HON. ABRAIIAM LINCOLN, President of United States.

What defines a good stereo correspondence?

Match quality
Want each pixel to find a good match in the other image

Smoothness

If two pixels are adjacent, they should (usually) move about
the same amount



E e = (W, (i) =W, (i + D(i)) )

E

smooth ~—

>, p(D(i)-D(j))

neighborsi, |

Energy functions of this form can be minimized using graph cuts.

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Enerqy
Minimization via Graph Cuts, PAMI 2001

Source: Steve Seijtz


http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Better results. ..

Graph cut method Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/

Challenges

- Low-contrast ‘textureless’ image regions
- Occlusions

- Violations of brightness constancy
- Specular reflections

- Really large baselines
- Foreshortening and appearance change

- Camera calibration errors



SIFT + Fundamental Matrix + RANSAC + Sparse correspondence

Photo Tourism

Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006



SIFT + Fundamental Matrix + RANSAC + dense correspondence

Despite their scale invariance and robustness to appear-
ance changes, SIFT features are /ocal and do not contain
any global information about the image or about the loca-
tion of other features in the image. Thus feature matching
based on SIFT features is still prone to errors. However,
since we assume that we are dealing with rigid scenes,
there are strong geometric constraints on the locations of
the matching features and these constraints can be used to
clean up the matches. In particular, when a rigid scene is
imaged by two pinhole cameras, there exists a 3 x 3 matrix
F, the Fundamental matrix, such that corresponding points
x; and x, (represented in homogeneous coordinates) in two
images j and k satisfy':

T, _
X, Fx; =0. (3)

A common way to impose this constraint is to use a greedy
randomized algorithm to generate suitably chosen ran-
dom estimates of F and choose the one that has the larg-
est support among the matches, i.e., the one for which the
most matches satisfy (3). This algorithm is called Random
Sample Consensus (RANSAC)® and is used in many com-
puter vision problems.

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski 2009
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



SIFT + Fundamental Matrix + RANSAC + dense correspondence

Input images StM points MVS points

Colosseum

St. Peter'’s

Building Rome in a Day
By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



SIFT + Fundamental Matrix + RANSAC + dense correspondence

The Visual Turing Test for Scene Reconstruction
Supplementary Video

Qi Shan” Riley Adams™  Brian Curless’
Yasutaka Furukawa* Steve Seitz™

+University of Washington *Google

3DV 2013



Once | have my depth map,
what can | do with it?

Measure.
Combine! (Reorganize?)



What if we want to align...
but we have no matched pairs?

* Hough transform and RANSAC not applicable

Problem: no initial guesses for correspondence



Important applications

Medical imaging: match
brain scans or contours

Robotics: match point clouds

Kwok and Tang



ICP demonstration

Bouaziz et al.



Iterative Closest Points (ICP) Algorithm

Goal:
Estimate transform between two dense point sets S; and S,

1. Initialize transformation

Compute difference in mean positions, subtract
Compute difference in scales, normalize

2. Assign each pointin S, to its nearest neighborin s,
3. Estimate transformation parameters T

—  Least squares or robust least squares, e.g., rigid transform

4. Transform the pointsin S, using estimated parameters T
5. Repeat steps 2-4 until change is very small (convergence)



Example: solving for translation

Problem: no initial guesses for correspondence

ICP solution N: A t
. Initialize £ by mean point translation =+

. . . B A
Find nearest neighbors for each point Yi Yi
Compute transform using matches
Move points using transform

Repeat steps 2-4 until convergence

N



Example: aligning boundaries

Extract edge pixels p,..p,and q,..q,,
2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches

5. Transform points p accordingto T
Repeat 3-5 until convergence




ICP demonstration

Bouaziz et al.



Stereo correspondence

* Let x be a point in left image, x” in right image

* Epipolar relation
* x maps to epipolar line I
* X’ maps to epipolar line /

\, I/

i ? ‘tq
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FT=STHON. ABRAIIAM LINCOLN, President of United States. :T
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How does a depth camera work?

Microsoft Kinect v1

Intel laptop depth camera



Active stereo with structured light

e Project “structured” light patterns onto the object
— Simplifies the correspondence problem
— Allows us to use only one camera

—

camera

Stereo system! — I:Ij

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/



http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

How does a depth camera work?

Stereo in infrared.




Time of Flight (Kinect V2)

e Depth cameras in HoloLens use time of flight
* “SONAR for light”

* Emit light of a known wavelength, and time how long it
takes for it to come back

- »mﬁ
:

stop

3D Surface



With either technique...

...| gain depth maps over time.

Optex Depth Camera Based on Canesta Solution



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Sparse ICP

Sofien Bouaziz

Andrea Tagliasacchi

Mark Pauly



BundleFusion: Real-time Globally Consistent
3D Reconstruction using Online Surface Re-integration

Angela Dai'  Matthias NiefSner!
Michael Zollhéfer’ Shahram Izadi’
Christian Theobalt?

!Stanford University
Max Planck Institute for Informatics
SMicrosoft Research

(contains audio)



ScanNet:
Richly-annotated 3D Reconstructions
of Indoor Scenes

Angela Dai__Angel X: Chang Manolis Savva« Maciej Halber
ThemiasiEunkhouser ~ Matthias NiefSner

Stanford University
Princeton University
Technical University of Munich

CVPR 2017 (Spotlight)




