


Multi-stable Perception

Necker Cube



Spinning dancer illusion, Nobuyuki Kayahara





Multiple view geometry

Hartley and Zisserman

Lowe

Stereo vision

Epipolar geometry

Depth map extraction



Essential Matrix

(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ  xRtx   RtExExT

 with0ˆˆ

X

x x’

E is a 3x3 matrix which relates 

corresponding pairs of normalized 

homogeneous image points across pairs of 

images – for K calibrated cameras.

Estimates relative position/orientation. Note: [t]× is matrix representation of cross product 



Fundamental matrix for uncalibrated cases

1with0   KEKFxFx TT

• F x’ = 0 is the epipolar line l associated with x’ 

• FTx = 0 is the epipolar line l’ associated with x 

• F is singular (rank two): det(F)=0

• F e’ = 0   and   FTe = 0   (nullspaces of F = e’; nullspace of FT = e’)

• F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

X

x x’



VLFeat’s 800 most confident matches 
among 10,000+ local features.



Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

14InliersN



Epipolar lines



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix
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Dense correspondence problem

Multiple match 

hypotheses 

satisfy epipolar 

constraint, but 

which is correct? 

Figure from Gee & Cipolla 1999
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“Shortest paths” for scan-line stereo
Left image

Right image

Can be implemented with dynamic programming

Ohta & Kanade ’85, Cox et al. ’96, Intille & Bobick, ‘01
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Slide credit: Y. Boykov
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W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 

variation, yet small enough to contain only pixels with 

about the same disparity.

Effect of window size
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Motion and Gestalt laws of grouping

Gestalt psychology 

(Max Wertheimer, 

1880-1943)
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Motion and perceptual organization

Gestalt psychology 

(Max Wertheimer, 

1880-1943)

…plus closure, continuation, ‘good form’
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Motion and perceptual organization
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Motion and perceptual organization

• Sometimes motion is the only cue…
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Motion and perceptual organization

Even “impoverished” motion data can evoke a strong percept
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Motion and perceptual organization

Even “impoverished” motion data can evoke a strong percept
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Video

• A video is a sequence of frames captured over time

• A ‘function’ of space (x, y) and time (t)
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Motion Applications

• Background subtraction

• Shot boundary detection

• Motion segmentation

• Segment the video into multiple coherently moving objects
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Mosaicing

(Michal Irani, Weizmann)
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Mosaicing

(Michal Irani, Weizmann)
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Mosaicing for Panoramas on Smartphones

Compare small 

overlap for efficiency

Left to right sweep of video camera

Frame t t+1 t+3 t+5
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Mosaicing for Panoramas on Smartphones



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Mosaicing for Panoramas on Smartphones
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Mosaicing for Panoramas on Smartphones



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Mosaicing for Panoramas on Smartphones
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Motion estimation techniques

• Feature-based methods

• Extract visual features (corners, textured areas) and track them 

over multiple frames

• Sparse motion fields, but more robust tracking

• Suitable when image motion is large (10s of pixels)

• Direct, dense methods

• Directly recover image motion at each pixel from spatio-temporal 

image brightness variations

• Dense motion fields, but sensitive to appearance variations

• Suitable for video and when image motion is small

• Optical flow!
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Computer Vision

Motion and Optical Flow

Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others…
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Motion estimation: Optical flow

Will start by estimating motion of each pixel separately

Then will consider motion of entire image 

Optic flow is the apparent motion of objects or surfaces



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Problem definition:  optical flow

How to estimate pixel motion from image I(x,y,t) to I(x,y,t+1) ?

• Solve pixel correspondence problem

– Given a pixel in I(x,y,t), look for nearby pixels of the same color in I(x,y,t+1)

Key assumptions

• Small motion:  Points do not move very far

• Color constancy:  A point in I(x,y,t) looks the same in I(x,y,t+1)

– For grayscale images, this is brightness constancy

( , , )I x y t ( , , 1)I x y t 
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Optical flow constraints (grayscale images)

• Let’s look at these constraints more closely

• Brightness constancy constraint  (equation)

• Small motion:  (u and v are less than 1 pixel, or smoothly varying) 

Taylor series expansion of I:

( , , )I x y t ( , , 1)I x y t 

( , ) ( , ) [higher order terms]
I I

I x u y v I x y u v
x y

 
     

 

( , )
I I

I x y u v
x y

 
  

 

( , , ) ( , , 1)I x y t I x u y v t   
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0 ( , , 1) ( , , )

( , , 1) ( , , )x y

I x u y v t I x y t

I x y t I u I v I x y t

    

    

Optical flow equation
• Combining these two equations

(Short hand: 𝐼𝑥 =
𝜕𝐼

𝜕𝑥

for t or t+1)
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0 ( , , 1) ( , , )

( , , 1) ( , , )

[ ( , , 1) ( , , )]

,

x y

x y

t x y

t

I x u y v t I x y t

I x y t I u I v I x y t

I x y t I x y t I u I v

I I u I v

I I u v

    

    

    

  

    

Optical flow equation
• Combining these two equations

(Short hand: 𝐼𝑥 =
𝜕𝐼

𝜕𝑥

for t or t+1)
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0 ( , , 1) ( , , )

( , , 1) ( , , )

[ ( , , 1) ( , , )]

,

x y

x y

t x y

t

I x u y v t I x y t

I x y t I u I v I x y t

I x y t I x y t I u I v

I I u I v

I I u v

    

    

    

  

    

Optical flow equation
• Combining these two equations

In the limit as u and v go to zero, this becomes exact

Brightness constancy constraint equation

0x y tI u I v I  

0 ,tI I u v    

(Short hand: 𝐼𝑥 =
𝜕𝐼

𝜕𝑥

for t or t+1)
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How does this make sense?

What do the static image gradients 

have to do with motion estimation?

Brightness constancy constraint equation

0x y tI u I v I  



The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 

gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 

so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

  0'v'uI
T


Can we use this equation to recover image motion (u,v) at 

each pixel?

0x y tI u I v I  0 ,tI I u v    or
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Aperture problem
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Aperture problem
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Aperture problem
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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Solving the ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint

• Assume the pixel’s neighbors have the same (u,v)
• If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 

Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.
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• Least squares problem:

Solving the ambiguity…
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Matching patches across images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  What are good points to track?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–  1/  2 should not be too large ( 1 = larger eigenvalue)

Criteria for Harris corner detector 
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Low texture region

– gradients have small magnitude

– small 1, small 2
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Edge

– large gradients, all the same

– large 1, small 2
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High textured region

– gradients are different, large magnitudes

– large 1, large 2



The aperture problem resolved

Actual motion



The aperture problem resolved

Perceived motion
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Errors in assumptions

• A point does not move like its neighbors

• Motion segmentation

• Brightness constancy does not hold

• Do exhaustive neighborhood search with normalized correlation -

tracking features – maybe SIFT – more later….

• The motion is large (larger than a pixel)

1. Not-linear: Iterative refinement

2. Local minima: coarse-to-fine estimation
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Revisiting the small motion assumption

• Is this motion small enough?

• Probably not—it’s much larger than one pixel 

• How might we solve this problem?
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 

images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 

(no aliasing)

nearest match is incorrect 

(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift
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Reduce the resolution!
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image 2image 1

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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State-of-the-art optical flow, 2009

Start with something similar to Lucas-Kanade

+ gradient constancy

+ energy minimization with smoothing term

+ region matching

+ keypoint matching (long-range)

Large displacement optical flow, Brox et al., CVPR 2009

Region-based +Pixel-based +Keypoint-based

http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf
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State-of-the-art optical flow, 2015

CNN 

Pair of input frames 

Upsample estimated flow back to input resolution

Near state-of-the-art in terms of end-point-error

Fischer et al. 2015. https://arxiv.org/abs/1504.06852
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State-of-the-art optical flow, 2015

Synthetic Training data

Fischer et al. 2015. https://arxiv.org/abs/1504.06852
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State-of-the-art optical flow, 2015

Results on Sintel

Fischer et al. 2015. https://arxiv.org/abs/1504.06852



Optical flow

• Definition: the apparent motion of brightness 
patterns in the image

• Ideally, the same as the projected motion field

• Take care: apparent motion can be caused by 
lighting changes without any actual motion

– Imagine a uniform rotating sphere under fixed 
lighting vs. a stationary sphere under moving 
illumination.



Can we do more? Scene flow

Combine spatial stereo & temporal constraints

Recover 3D vectors of world motion

Stereo view 1 Stereo view 2

t

t-1

3D world motion 
vector per pixel

z

x

y



Scene flow example for human motion

Estimating 3D Scene Flow from Multiple 2D Optical Flows, Ruttle et al., 2009



Scene Flow

[Estimation of Dense Depth Maps and 3D Scene Flow from Stereo Sequences, M. Jaimez et al., TU Munchen]

https://www.youtube.com/watch?v=RL_TK_Be6_4

https://vision.in.tum.de/research/sceneflow

https://www.youtube.com/watch?v=RL_TK_Be6_4
https://vision.in.tum.de/research/sceneflow

