COMPUTER VISION # Image as a 2D sampling of signal Signal: function depending on some variable with physical meaning - Image: sampling of that function - 2 variables: xy coordinates - 3 variables: xy + time (video) - 'Brightness' is the value of the function for visible light Making sense of subspace of natural images #### Practical Color Sensing: Bayer Grid Estimate RGB at 'G' cells from neighboring values # Color Image # Images in Matlab - Images represented as a matrix - Suppose we have a NxM RGB image called "im" - im(1,1,1) = top-left pixel value in R-channel - im(y, x, b) = y pixels down, x pixels to right in the b<sup>th</sup> channel - im(N, M, 3) = bottom-right pixel in B-channel - imread(filename) returns a uint8 image (values 0 to 255) - Convert to double format (values 0 to 1) with im2double | | col | um | n - | | | | | | | | | $\Rightarrow$ | | | | | |-----|------|------|------|------|------|------|------|------|------|------|------|---------------|--------------|------|------|--------| | row | 0.92 | 0.93 | 0.94 | 0.97 | 0.62 | 0.37 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 | R | | | | | | | 0.95 | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 | | | | | | | | 0.89 | 0.72 | 0.51 | 0.55 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 | 0.92 | 0.92 | 0.99 | ı G | | | | | 0.96 | 0.95 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95 | 0.95 | 0.91 | | | _ | | | 0.71 | 0.81 | 0.81 | 0.87 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85 | 0.91 | 0.92 | | | ,B | | | 0.49 | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33 | 0.97 | 0.95 | 0.92 | 0.99 | | | | 0.86 | 0.84 | 0.74 | 0.58 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74 | 0.79 | 0.85 | 0.95 | 0.91 | | | | 0.96 | 0.67 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93 | 0.45 | 0.33 | 0.91 | 0.92 | | | | 0.69 | 0.49 | 0.56 | 0.66 | 0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99 | 0.49 | 0.74 | 0.97 | 0.95 | | | | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 | 0.82 | 0.93 | 0.79 | 0.85 | | | • | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | 0.90 | 0.99 | 0.45 | 0.33 | | | | | | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 | 0.49 | 0.74 | | | | | | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | 0.82 | 0.93 | | | | | | 0.51 | 0.54 | 0.05 | 0.75 | 0.50 | 0.00 | 0.70 | 0.72 | 0.03 | 0.75 | 0.75<br>0.71 | 0.90 | 0.99 | | | | | | | | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 | l | | | | | | | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | ames H | # **IMAGE FILTERING** # This week: three views of filtering - Image filters in spatial domain - Filter is a mathematical operation of a grid of numbers - Smoothing, sharpening, measuring texture - Image filters in the frequency domain - Filtering is a way to modify the frequencies of images - Denoising, sampling, image compression - Image pyramids - Scale-space representation allows coarse-to-fine operations - Image filtering: - Compute function of local neighborhood at each position $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ - Image filtering: - Compute function of local neighborhood at each position h=output f=filter I=image $$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$ 2d coords=m,n # Example: box filter $$f[\cdot\,,\cdot\,]$$ $$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$ $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |---|---|----|----|----|----|----|----|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |---|---|----|----|----|----|----|----|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ $$f[\cdot,\cdot]$$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |---|---|----|----|----|----|----|----|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 10 | 20 | 30 | 30 | 30 | 20 | 10 | | |----|----|----|----|----|----|----|----|--| | 0 | 20 | 40 | 60 | 60 | 60 | 40 | 20 | | | 0 | 30 | 60 | 90 | 90 | 90 | 60 | 30 | | | 0 | 30 | 50 | 80 | 80 | 90 | 60 | 30 | | | 0 | 30 | 50 | 80 | 80 | 90 | 60 | 30 | | | 0 | 20 | 30 | 50 | 50 | 60 | 40 | 20 | | | 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 | | | 10 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ #### **Box Filter** #### What does it do? - Replaces each pixel with an average of its neighborhood - Achieve smoothing effect (remove sharp features) #### **Box Filter** #### What does it do? - Replaces each pixel with an average of its neighborhood - Achieve smoothing effect (remove sharp features) - Why does it sum to one? # Smoothing with box filter - Image filtering: - Compute function of local neighborhood at each position $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ - Really important! - Enhance images - Denoise, resize, increase contrast, etc. - Extract information from images - Texture, edges, distinctive points, etc. - Detect patterns - Template matching ### Think-Pair-Share time 1 | 0 | 0 | 0 | |---|---|---| | 0 | 1 | 0 | | 0 | 0 | 0 | 2 | 0 | 0 | 0 | |---|---|---| | 0 | 0 | 1 | | 0 | 0 | 0 | 3. | 1 | 0 | 1 | |---|---|----------------| | 2 | 0 | <del>-</del> 2 | | 1 | 0 | -1 | 4. | 0 | 0 | 0 | |---|---|---| | 0 | 2 | 0 | | 0 | 0 | 0 | | | 1 | 1 | 1 | |---|---|---|---| | - | 1 | 1 | 1 | | , | 1 | 1 | 1 | | $\sim$ | • | • | 1 | |--------|------------|----------|-----| | () | <b>r</b> 1 | gin | ıal | | _ | | <b>5</b> | | | 0 | 0 | 0 | |---|---|---| | 0 | 1 | 0 | | 0 | 0 | 0 | ? Original Filtered (no change) Original | 0 | 0 | 0 | |---|---|---| | 0 | 0 | 1 | | 0 | 0 | 0 | ? Original Shifted left By 1 pixel | 1 | 0 | -1 | |---|---|----| | 2 | 0 | -2 | | 1 | 0 | -1 | Sobel Vertical Edge (absolute value) | 1 | 2 | 1 | |----|----|----| | 0 | 0 | 0 | | -1 | -2 | -1 | Sobel Horizontal Edge (absolute value) David Lowe Original | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |---|---|---|----------|---|---|---| | 0 | 2 | 0 | <u> </u> | 1 | 1 | 1 | | 0 | 0 | 0 | 9 | 1 | 1 | 1 | (Note that filter sums to 1) Source: D. Lowe | 0 | 0 | 0 | |---|---|---| | 0 | 2 | 0 | | 0 | 0 | 0 | Original #### **Sharpening filter** - Accentuates differences with local average before after # Filtering: Correlation vs. Convolution 2d correlation $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ # Filtering: Correlation vs. Convolution #### 2d correlation $$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$ #### 2d convolution h=conv2(f, I); $$h[m, n] = \sum_{i=1}^{n} f[k, i] I[m, k, n]$$ $$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$ conv2(I, f) is the same as filter2(rot90(f,2),I) Correlation and convolution are identical when the filter is symmetric. # Key properties of linear filters #### **Linearity:** ``` imfilter(I, f_1 + f_2) = imfilter(I, f_1) + imfilter(I, f_2) ``` # **Shift invariance:** same behavior regardless of pixel location ``` imfilter(I, shift(f)) = shift(imfilter(I, f)) ``` Any linear, shift-invariant operator can be represented as a convolution ## Convolution properties - Commutative: a \* b = b \* a - Conceptually no difference between filter and signal - But particular filtering implementations might break this equality, e.g., image edges - Associative: a \* (b \* c) = (a \* b) \* c - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ - This is equivalent to applying one filter: a \* $(b_1 * b_2 * b_3)$ - Correlation is \_not\_ associative (rotation effect) - Why important? ## Convolution properties - Commutative: a \* b = b \* a - Conceptually no difference between filter and signal - But particular filtering implementations might break this equality, e.g., image edges - Associative: a \* (b \* c) = (a \* b) \* c - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ - This is equivalent to applying one filter: a \* $(b_1 * b_2 * b_3)$ - Correlation is \_not\_ associative (rotation effect) - Why important? - Distributes over addition: a \* (b + c) = (a \* b) + (a \* c) - Scalars factor out: ka \* b = a \* kb = k (a \* b) - Identity: unit impulse e = [0, 0, 1, 0, 0], a \* e = a #### Important filter: Gaussian Weight contributions of neighboring pixels by nearness | | | | ^ | | | |---|-------|-------|-------|-------|-------| | | | | | | | | | 0.003 | 0.013 | 0.022 | 0.013 | 0.003 | | | 0.013 | 0.059 | 0.097 | 0.059 | 0.013 | | У | | | | 0.097 | | | | 0.013 | 0.059 | 0.097 | 0.059 | 0.013 | | | 0.003 | 0.013 | 0.022 | 0.013 | 0.003 | | | | | | | | Y $$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$ $5 \times 5$ , $\sigma = 1$ # Smoothing with Gaussian filter # Smoothing with box filter #### Gaussian filters - Remove "high-frequency" components from the image (low-pass filter) - Images become more smooth - Convolution with self is another Gaussian - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have - Convolving two times with Gaussian kernel of width $\sigma$ is same as convolving once with kernel of width $\sigma$ V2 - Separable kernel - Factors into product of two 1D Gaussians ## Separability of the Gaussian filter $$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$ $$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$ The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y In this case, the two functions are the (identical) 1D Gaussian ## Separability example 2D convolution (center location only) | 1 | 2 | 1 | | 2 | 3 | 3 | |---|---|---|---|---|---|---| | 2 | 4 | 2 | * | 3 | 5 | 5 | | 1 | 2 | 1 | | 4 | 4 | 6 | The filter factors into a product of 1D filters: | 1 | 2 | 1 | | 1 | |---|---|---|---|---| | 2 | 4 | 2 | = | 2 | | 1 | 2 | 1 | | 1 | x 1 2 1 Perform convolution along rows: Followed by convolution along the remaining column: # Separability Why is separability useful in practice? ## Separability - Why is separability useful in practice? - If K is width of convolution kernel: - 2D convolution = K<sup>2</sup> multiply-add operations - 2x 1D convolution: 2K multiply-add operations # Practical matters How big should the filter be? - Values at edges should be near zero - Gaussians have infinite extent... - Rule of thumb for Gaussian: set filter half-width to about 3 $\sigma$ #### Practical matters - What about near the edge? - the filter window falls off the edge of the image - need to extrapolate - methods: - clip filter (black) - wrap around - copy edge - reflect across edge #### Convolution in Convolutional Neural Networks - Convolution is the basic operation in CNNs - CNNs are big classification machines - But image are complex #### Convolution in Convolutional Neural Networks - Convolution is the basic operation in CNNs - CNNs are big classification machines - But image are complex - Convolution allows us to blur details so that classification is more robust to noise. - Convolution allows us to blur *visual* appearance of objects in images so that classifier is robust to scene variation # Tilt-shift photography # Macro photography ## Tilt shift camera #### Can we fake tilt shift? - We need to blur the image - OK, we now know how to do that. #### Can we fake tilt shift? - We need to blur the image - OK, we now know how to do that. We need to blur progressively more away from our 'fake' focal point ## But can I make it look more like a toy? - From Friday on Color - Transform to Hue, Saturation, Value - Boost saturation toys are very colorful - Back to RGB, save. ## Next class: Thinking in Frequency