

COMPUTER VISION

Image as a 2D sampling of signal

Signal: function depending on some variable with physical meaning

- Image: sampling of that function
 - 2 variables: xy coordinates
 - 3 variables: xy + time (video)
 - 'Brightness' is the value of the function for visible light

Making sense of subspace of natural images

Practical Color Sensing: Bayer Grid

Estimate RGB
 at 'G' cells from
 neighboring
 values

Color Image

Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

	col	um	n -									\Rightarrow				
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	ı G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91			_
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92			,B
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79	0.85	
•	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93	
			0.51	0.54	0.05	0.75	0.50	0.00	0.70	0.72	0.03	0.75	0.75 0.71	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	l
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	ames H

IMAGE FILTERING

This week: three views of filtering

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Image pyramids
 - Scale-space representation allows coarse-to-fine operations

- Image filtering:
 - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Image filtering:
 - Compute function of local neighborhood at each position

h=output f=filter I=image
$$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$
 2d coords=m,n

Example: box filter

$$f[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?

Smoothing with box filter

- Image filtering:
 - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Think-Pair-Share time

1

0	0	0
0	1	0
0	0	0

2

0	0	0
0	0	1
0	0	0

3.

1	0	1
2	0	- 2
1	0	-1

4.

0	0	0
0	2	0
0	0	0

	1	1	1
-	1	1	1
,	1	1	1

\sim	•	•	1
()	r 1	gin	ıal
_		5	

0	0	0
0	1	0
0	0	0

?

Original

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

Shifted left By 1 pixel

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

David Lowe

Original

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

before after

Filtering: Correlation vs. Convolution

2d correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Filtering: Correlation vs. Convolution

2d correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

2d convolution

h=conv2(f, I);
$$h[m, n] = \sum_{i=1}^{n} f[k, i] I[m, k, n]$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

conv2(I, f) is the same as filter2(rot90(f,2),I) Correlation and convolution are identical when the filter is symmetric.

Key properties of linear filters

Linearity:

```
imfilter(I, f_1 + f_2) =
imfilter(I, f_1) + imfilter(I, f_2)
```

Shift invariance: same behavior regardless of pixel location

```
imfilter(I, shift(f)) = shift(imfilter(I, f))
```

Any linear, shift-invariant operator can be represented as a convolution

Convolution properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality, e.g., image edges

- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
 - Correlation is _not_ associative (rotation effect)
 - Why important?

Convolution properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality,
 e.g., image edges
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
 - Correlation is _not_ associative (rotation effect)
 - Why important?
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

			^		
	0.003	0.013	0.022	0.013	0.003
	0.013	0.059	0.097	0.059	0.013
У				0.097	
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003

Y

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

 5×5 , $\sigma = 1$

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

1	2	1		1
2	4	2	=	2
1	2	1		1

x 1 2 1

Perform convolution along rows:

Followed by convolution along the remaining column:

Separability

Why is separability useful in practice?

Separability

- Why is separability useful in practice?
- If K is width of convolution kernel:
 - 2D convolution = K² multiply-add operations
 - 2x 1D convolution: 2K multiply-add operations

Practical matters How big should the filter be?

- Values at edges should be near zero
- Gaussians have infinite extent...
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Convolution in Convolutional Neural Networks

- Convolution is the basic operation in CNNs
- CNNs are big classification machines
 - But image are complex

Convolution in Convolutional Neural Networks

- Convolution is the basic operation in CNNs
- CNNs are big classification machines
 - But image are complex

- Convolution allows us to blur details so that classification is more robust to noise.
- Convolution allows us to blur *visual*
 appearance of objects in images so that classifier is robust to scene variation

Tilt-shift photography

Macro photography

Tilt shift camera

Can we fake tilt shift?

- We need to blur the image
 - OK, we now know how to do that.

Can we fake tilt shift?

- We need to blur the image
 - OK, we now know how to do that.

 We need to blur progressively more away from our 'fake' focal point

But can I make it look more like a toy?

- From Friday on Color
- Transform to Hue, Saturation, Value
- Boost saturation toys are very colorful
- Back to RGB, save.

Next class: Thinking in Frequency

