

Future Vision

2017 MWF 1PM 368 Computer Vision

Recap: Fourier transform

- Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

Wikipedia - Fourier transform

Sine/cosine and circle

Square wave (approx.)

Sawtooth wave (approx.)

Euler's formula

Fourier Transform

- Stores the amplitude and phase at each frequency:
- For mathematical convenience, this is often notated in terms of real and complex numbers
- Related by Euler's formula
- Amplitude encodes how much signal there is at a particular frequency

$$
\text { Amplitude: } \quad A= \pm \sqrt{\operatorname{Re}(\omega)^{2}+\operatorname{Im}(\omega)^{2}}
$$

- Phase encodes spatial information (indirectly)

$$
\text { Phase: } \phi=\tan ^{-1} \frac{\operatorname{Im}(\omega)}{\operatorname{Re}(\omega)}
$$

Brian Pauw demo

- Live FFT2 demo
- I hacked it a bit
- http://www.lookingatnothing.com/index.php/ archives/991

Amplitude / Phase

- Amplitude tells you "how much"
- Phase tells you "where"
- Translate the image?
- Amplitude unchanged
- Adds a constant to the phase.

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why do we have those lines in the image?

- Sharp edges in the image need _all_ frequencies to represent them.

Box filter / sinc filter duality

- What is the spatial representation of the hard cutoff (box) in the frequency domain?
- http://madebyevan.com/dft/

Sinc filter $\quad \operatorname{sinc}(x)=\sin (x) / x$

Spatial Domain \Longleftrightarrow Frequency Domain
Frequency Domain \Longleftrightarrow Spatial Domain

Frequency domain magnitude
Box filter (spatial)

Gaussian filter duality

- Fourier transform of one Gaussian...
...is another Gaussian (inverse variance).
- Why is this useful?
- Smooth degradation in frequency components
- No sharp cut-off
- No negative values
- Never zero (infinite extent)

Frequency domain magnitude

Gaussian filter
(spatial)

Frequency domain magnitude

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Properties of Fourier Transforms

- Linearity $\quad \mathcal{F}[a x(t)+b y(t)]=a \mathcal{F}[x(t)]+b \mathcal{F}[y(t)]$
- Fourier transform of a real signal is symmetric about the origin
- The energy of the signal is the same as the energy of its Fourier transform

The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

$$
g^{*} h=\mathrm{F}^{-1}[\mathrm{~F}[g] \mathrm{F}[h]]
$$

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

intensity image

Filtering in frequency domain

> FFT

Inverse FFT \square

Think-Pair-Share

Match the spatial domain image to the Fourier magnitude image

5

Is convolution invertible?

- If convolution is just multiplication in the Fourier domain, isn't deconvolution just division?
- Sometimes, it clearly is invertible (e.g. a convolution with an identity filter)
- In one case, it clearly isn't invertible (e.g. convolution with an all zero filter)
- What about for common filters like a Gaussian?

Let's experiment on Novak

Convolution

Deconvolution?

But under more realistic conditions

iFFT

FFT \downarrow

FFT

But under more realistic conditions

FFT \downarrow
iFFT-

Random noise, .0001 magnitude

FFT V

But under more realistic conditions

iFFT个

Random noise, .001 magnitude

FFT

Deconvolution is hard

- Active research area.
- Even if you know the filter (non-blind deconvolution), it is still very hard and requires strong regularization to counteract noise.
- If you don't know the filter (blind deconvolution) it is harder still.

Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Subsampling by a factor of 2

Throw away every other row and column to create a $1 / 2$ size image

Aliasing problem

- 1D example (sinewave):

Aliasing problem

- 1D example (sinewave):

Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
- "car wheels rolling the wrong way in movies"
- "checkerboards disintegrate in ray tracing"
- "striped shirts look funny on color television"
- Moiré patterns

Aliasing in graphics

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what's happening.
If camera shutter is only open for a fraction of a frame time (frame time $=1 / 30 \mathrm{sec}$. for video, $1 / 24 \mathrm{sec}$. for film):

frame 1

time

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Sampling and aliasing

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text {max }}$
- $f_{\text {max }}=$ max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

How to fix aliasing?

Solutions?

Better sensors

Solutions:

- Sample more often

Anti-aliasing

Solutions:

- Sample more often
- Get rid of all frequencies that are greater than half the new sampling frequency
- Will lose information
- But it's better than aliasing
- Apply a smoothing filter

Anti-aliasing

Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter
im_blur = imfilter(image, fspecial('gaussian’, 7, 1))
3. Sample every other pixel im_small = im_blur(1:2:end, 1:2:end);

Subsampling without pre-filtering

1/2

$1 / 4$ (2x zoom)

1/8 (4x zoom)

Subsampling with Gaussian pre-filtering

Gaussian 1/2
G $1 / 4$
G 1/8

Image Pyramids

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Salvador Dali invented Hybrid Images?

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

