

Recap: Fourier transform

 Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

Wikipedia – Fourier transform

Sine/cosine and circle

Square wave (approx.)

Sawtooth wave (approx.)

Mehmet E. Yavuz

Euler's formula

Fourier Transform

- Stores the amplitude and phase at each frequency:
 - For mathematical convenience, this is often notated in terms of real and complex numbers
 - Related by Euler's formula
 - Amplitude encodes how much signal there is at a particular frequency

Amplitude:
$$A = \pm \sqrt{\text{Re}(\omega)^2 + \text{Im}(\omega)^2}$$

Phase encodes spatial information (indirectly)

Phase:
$$\phi = \tan^{-1} \frac{\operatorname{Im}(\omega)}{\operatorname{Re}(\omega)}$$

Brian Pauw demo

- Live FFT2 demo
- I hacked it a bit
- http://www.lookingatnothing.com/index.php/ archives/991

Amplitude / Phase

- Amplitude tells you "how much"
- Phase tells you "where"
- Translate the image?
 - Amplitude unchanged
 - Adds a constant to the phase.

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Hays

Why do we have those lines in the image?

 Sharp edges in the image need _all_ frequencies to represent them.

Box filter / sinc filter duality

- What is the spatial representation of the hard cutoff (box) in the frequency domain?
- http://madebyevan.com/dft/

Spatial Domain \iff Frequency Domain Frequency Domain \iff Spatial Domain

Gaussian filter duality

- Fourier transform of one Gaussian... ...is another Gaussian (inverse variance).
- Why is this useful?
 - Smooth degradation in frequency components
 - No sharp cut-off
 - No negative values
 - Never zero (infinite extent)

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Properties of Fourier Transforms

- Linearity $\mathcal{F}[ax(t) + by(t)] = a\mathcal{F}[x(t)] + b\mathcal{F}[y(t)]$
- Fourier transform of a real signal is symmetric about the origin

• The energy of the signal is the same as the energy of its Fourier transform

The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$\mathbf{F}[g * h] = \mathbf{F}[g]\mathbf{F}[h]$$

• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

$$g * h = F^{-1}[F[g]F[h]]$$

Filtering in spatial domain

10-120-210-1

Slide: Hoiem

Think-Pair-Share

Match the spatial domain image to the Fourier magnitude image

Is convolution invertible?

• If convolution is just multiplication in the Fourier domain, isn't deconvolution just division?

- Sometimes, it clearly is invertible (e.g. a convolution with an identity filter)
- In one case, it clearly isn't invertible (e.g. convolution with an all zero filter)
- What about for common filters like a Gaussian?

Let's experiment on Novak

Convolution

FFT

10

0

-2

-4

Deconvolution?

10

iFFT

But under more realistic conditions

But under more realistic conditions

10

0

-2

Random noise, .0001 magnitude

But under more realistic conditions

8

6

2

-2

Deconvolution is hard

• Active research area.

 Even if you know the filter (non-blind deconvolution), it is still very hard and requires strong *regularization* to counteract noise.

• If you don't know the filter (blind deconvolution) it is harder still.

Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Aliasing problem

• 1D example (sinewave):

Aliasing problem

• 1D example (sinewave):

Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
 - "car wheels rolling the wrong way in movies"
 - "checkerboards disintegrate in ray tracing"
 - "striped shirts look funny on color television"
 - Moiré patterns

Aliasing in graphics

Source: A. Efros

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Sampling and aliasing

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\ge 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

How to fix aliasing?

Solutions?

Better sensors

Solutions:

• Sample more often

Anti-aliasing

Solutions:

• Sample more often

- Get rid of all frequencies that are greater than half the new sampling frequency
 - Will lose information
 - But it's better than aliasing
 - Apply a smoothing filter

256x256 128x128 64x64 32x32 16x16

Forsyth and Ponce 2002

Algorithm for downsampling by factor of 2

- 1. Start with image(h, w)
- 2. Apply low-pass filter

im_blur = imfilter(image, fspecial('gaussian', 7, 1))

3. Sample every other pixel

im_small = im_blur(1:2:end, 1:2:end);

Subsampling without pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

Slide by Steve Seitz

Image Pyramids

Hays

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Salvador Dali invented Hybrid Images?

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

