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Does everyone have an override code?



Project 1 due Friday 9pm



Review of Filtering

* Filtering in frequency domain

— Can be faster than filtering in spatial domain (for
large filters)

— Can help understand effect of filter

— Algorithm:
1. Convert image and filter to fft (fft2 in matlab)
2. Pointwise-multiply ffts
3. Convert result to spatial domain with ifft2

Did anyone play with the code?

Hays



Review of Filtering

* Linear filters for basic processing
— Edge filter (high-pass)

— Gaussian filter (low-pass)
[-1 1]

Gaussian

FFT of Gradient Filter FFT of Gaussian

Hays
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Earl F. Glynn



Things to Remember

Sometimes it makes sense to think of
images and filtering in the frequency
domain

— Fourier analysis

Can be faster to filter using FFT for large
Images

* N logN vs. N? for auto-correlation

Images are mostly smooth

— Basis for compression | il

Remember to low-pass before sampling //\
* Otherwise you create aliasing \

Hays



Aliasing and Moiré patterns

Gong 96, 1932, Claude Tousignant, Musée des Beaux-Arts de Montreal






The blue and green colors are actually the same
http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/




Why do we get different, distance-dependent
interpretations of hybrid images?

Hays



Clues from Human Perception

e Early processing in humans filters for orientations and scales of frequency.

--

Early Visual Processing: Multi-scale edge and blob filters




Campbell-Robson contrast sensitivity curve

Perceptual cues in the mid-high
frequencies dominate perception.

Contrast decrease (log)

= 1 IIIIllIlllllHlliHHMHNIIMHMIHMH

Frequency increase (log)




Application: Hybrid Images

When we see an image from far away, we
are effectively subsampling it!

* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Thinking in Frequency - Compression

How is it that a 4MP image can be compressed to
a few hundred KB without a noticeable change?



Lossy Image Compression (JPEG)

8x8 blocks

8x8 blocks
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Block-based Discrete Cosine Transform (DCT)
Slides: Efros



Image compression using DCT

 Compute DCT filter responses in each 8x8 block

I [ —41538 -30.19 —-61.20 2724 56.13 —20.10 —-239 046 ]
Fllter responses 447 -21.86 —-60.76 1025 1315 —-T7.09 —854 488
G —46.83 737 7713 —-2456 2891 993 542 565 l""‘
N —48.53 1207 3410 —1476 -10.24 630 183 195

1212 —-6.55 —-1320 -395 —1.88 1.7 =279 314

—7.73 2.91 238 594 238 094 430 1.85
—1.03 0.18 042 242 088 302 412 -066

—0.17 014 -107 -419 -117 =010 050 1.68 |

* (Quantize to integer (div. by magic number; round)
— More coarsely for high frequencies (which also tend to have smaller values)
— Many quantized high frequency values will be zero

Quantization divisers (element-wise) Quantized values
(16 11 10 16 24 40 51 617 (-2 -3 -6 2 2 -1 0 0]
12 12 14 19 26 58 60 55 0 -2 -4 1 1 000
14 13 16 24 40 57 69 56 3 1 5 -1 -1 000
O— |14 17 2220 51 8 80 62 E_| 3 1 2-1 0 000
|18 22 37 56 68 109 103 77 - 1 0 0 0 0 000
24 35 55 64 81 104 113 92 0 0 0 0 0 000
49 64 78 87 103 121 120 101 0 0 0 0 0 000
72 92 95 98 112 100 103 99 | 0 0 0 0 0 00 0]




JPEG Encoding

Entropy coding (Huffman-variant)

Quantized values

[ 26 -3 —bH 2 2 -1 00

0 -2 -4 1 1 00 0
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Color spaces: YCbCr

Fast to compute, good for
compression, used by TV

Y=0 Y=0.5

(Cb=0.5,Cr=0.5)

Cb

(Y=0.5,Cr=0.5)

Cr

(Y=0.5,Ch=05)

James Hays



Most JPEG images & videos
subsample chroma

PSP Comp 3 Original
2x2 Chroma subsampling 1,261K lossless
285K 968K PNG



JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2
— People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients
b. Coarsely quantize
 Many high frequency components will become zero

c. Encode (with run length encoding and then
Huffman coding for leftovers)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG



http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

EDGE / BOUNDARY DETECTION

Szeliski 4.2



Edge detection

e Goal: Identify visual changes
(discontinuities) in an image.

* |ntuitively, semantic information
is encoded in edges.

e What are some ‘causes’ of
visual edges?

Source: D. Lowe



Origin of Edges

surface normal discontinuity

- < depth discontinuity
AO ./_(\; surface color discontinuity
\H,_,,/Z illumination discontinuity
~—___

* Edges are caused by a variety of factors

Source: Steve Seitz



Why do we care about edges?

* Extract information
— Recognize objects

* Vertical vanishing
point
£ (at infinity)

® HEIp recover geometry Vanli_sI;ing 3 : “ | .
and viewpoint _ \

Vanishing

point [Ege e point



Closeup of edges
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Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges
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Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Characterizing edges

e An edge is a place of rapid change in the
image intensity function

Intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Hays



Intensity profile
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With a little Gaussian noise
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Source: D. Hoiem



Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

duf (@)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: D. Forsyth



Solution: smooth first

Sigma = 50

(@]
Kernel

f*g

Convolution
|

d
—(f %
dX( g)

Differentiation

I
0 200 400 600 1400 1600 1800 2000

To find edges, look for peaks in %(f )

Source: S. Seitz



Derivative theorem of convolution

e Differentiationis convolution, and convolutionis

associative: —(fxg)=f*x—
o (1¥0)=T*

e This saves us one operation:

Sigma = 50

.................................................

—h
Signal

1 | 1 1 1 | 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

_______________________________________________________________________________________________

(@)
Kernel

1 | 1 1 1 I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Source: S. Seitz



Derivative of 2D Gaussian filter
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Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

 Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth



Think-Pair-Share

 What is a good edge detector?

* Do we lose information when we look at
edges? Are edges ‘incomplete’ as a
representation of images?



Designing an edge detector

e Criteria for a good edge detector:

— Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

— Good localization

* the edges detected must be as close as possible to
the true edges

* the detector must return one point only for each
true edge point
* Cues of edge detection

— Differences in color, intensity, or texture across the
boundary

— Continuity and closure
— High-level knowledge

Source: L. Fei-Fel



Designing an edge detector

“All real edges”

e We can aim to differentiate later on which edges
are ‘useful’ for our applications.

e |f we can’t find all things which could be called an
edge, we don’t have that choice.

e |s this possible?



Closeup of edges

Source: D. Hoiem



Elder — Are Edges Incomplete? 1999

e N - -~
. T L - 3
A sl SNBSS N N o OV CHNEI S S

Figure 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. The
original image contains edges over a broad range of contrasts and blur scales. In the middle are shown the edges detected with a Canny/Deriche
operator tuned to detect structure in the mannequin. On the right is shown the edges detected with a Canny/Deriche operator tuned to detect the

smooth contour of the shadow. Parameters are (¢ = 1.25, @ = 0.02) and (¢ = 0.5, @ = 0.02), respectively. See (Deriche, 1987) for details of
the Deriche detector.

What information would we need to
‘invert’ the edge detection process?



Elder — Are Edges Incomplete? 1999

I

Edge ‘code’:
- position,

- gradient
magnitude,

- gradient
direction,

- blur.

Figure 8. Top left: Original image. Top right: Detected edge locations. Middle left: Intermediate solution to the heat equation. Middle
right: Reconstructed luminance function. Botrom lefi: Reblurred result. Bortom right: Error map (reblurred result—original). Bright indicates
overestimation of intensity, dark indicates underestimation. Edge density is 1.7%. RMS error is 10.1 grey levels, with a 3.9 grey level DC
component, and an estimated 1.6 grey levels due to noise removal.



Where do humans see boundaries?

Image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB slides: Hays


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Texture Brightness

Martin, Fowlkes, Malik 2004 Learning to Detect
Natural Boundaries...

http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
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pB Boundary Detector
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Results

Pb (0.88)




Results

Pb (0.88)

Human (0.96)




Pb (0.63)
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Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects
/CS/vision/bsds/bench/html/108082-color.html



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection
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State of edge detection

* Local edge detection works well

— ‘False positives’ from illumination and texture
edges (depends on our application).

* Some methods to take into account longer
contours

* Modern methods that actually “learn” from
data.

* Poor use of object and high-level information.

Hays



Wednesday

* Classic Canny edge detector — 22,000 citations
* Interest Points and Corners



