

Does everyone have an override code?

Project 1 due Friday 9pm

Review of Filtering

- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to fft (fft2 in matlab)
 - 2. Pointwise-multiply ffts
 - 3. Convert result to spatial domain with ifft2

Did anyone play with the code?

Review of Filtering

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)

Gaussian

FFT of Gradient Filter

FFT of Gaussian

More Useful Filters

1st Derivative of Gaussian

Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis
- Can be faster to filter using FFT for large images
 - N logN vs. N² for auto-correlation
- Images are mostly smooth
 Basis for compression
- Remember to low-pass before sampling
 - Otherwise you create aliasing

Aliasing and Moiré patterns

Gong 96, 1932, Claude Tousignant, Musée des Beaux-Arts de Montréal

The blue and green colors are actually the same http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/

Why do we get different, distance-dependent interpretations of hybrid images?

Clues from Human Perception

• Early processing in humans filters for orientations and scales of frequency.

Early Visual Processing: Multi-scale edge and blob filters

Campbell-Robson contrast sensitivity curve

Perceptual cues in the mid-high frequencies dominate perception.

Frequency increase (log) _____

Application: Hybrid Images

When we see an image from far away, we are effectively subsampling it!

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Thinking in Frequency - Compression

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Lossy Image Compression (JPEG)

8x8 blocks

The first coefficient B(0,0) is the DC component, the average intensity

The top-left coeffs represent low frequencies, the bottom right represent high frequencies

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Image compression using DCT

• Compute DCT filter responses in each 8x8 block

Filter responses

- -30.19 61.2027.2456.13 - 20.10 - 2.390.46-415.384.47 - 21.86 - 60.76 10.2513.15-7.09 - 8.544.88 $G = \begin{bmatrix} -46.83 & 7.37 & 77.13 & -24.56 & -48.53 & 12.07 & 34.10 & -14.76 & -12.12 & -6.55 & -13.20 & -3.95 \\ -7.73 & 2.91 & 2.38 & -5.94 \\ -1.03 & 0.18 & 0.42 & -2.42 \end{bmatrix}$ -28.919.935.42-5.656.30-10.241.831.951.75-1.88-2.793.140.94-2.384.301.85-0.88-3.024.12-0.66-1.07 -4.190.14 -1.17-0.100.501.68
- Quantize to integer (div. by magic number; round)
 - More coarsely for high frequencies (which also tend to have smaller values)
 - Many quantized high frequency values will be zero

Quantization divisers (element-wise)

Q =	16	11	10	16	24	40	51	61
	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99

Quantized values

JPEG Encoding

• Entropy coding (Huffman-variant)

Quantized values

Linearize *B* like this.

Helps compression:

 We throw away the high frequencies ('0').

The zig zag pattern increases in frequency space, so long runs of zeros.

【 (Cb=0.5,Cr=0.5)

Cb (Y=0.5,Cr=0.5)

Cr (Y=0.5,Cb=05)

Most JPEG images & videos subsample chroma

PSP Comp 3 2x2 Chroma subsampling 285K Original 1,261K lossless 968K PNG

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - People have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (with run length encoding and then Huffman coding for leftovers)

EDGE / BOUNDARY DETECTION Szeliski 4.2

Many slides from James Hays, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

Edge detection

• **Goal:** Identify visual changes (discontinuities) in an image.

• Intuitively, semantic information is encoded in edges.

• What are some 'causes' of visual edges?

Origin of Edges

• Edges are caused by a variety of factors

Why do we care about edges?

- Extract information
 - Recognize objects

 Help recover geometry and viewpoint

Characterizing edges

An edge is a place of rapid change in the image intensity function

Intensity profile

With a little Gaussian noise

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f * g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f * g) = f * \frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of 2D Gaussian filter

Tradeoff between smoothing and localization

1 pixel

3 pixels

7 pixels

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Think-Pair-Share

• What is a good edge detector?

 Do we lose information when we look at edges? Are edges 'incomplete' as a representation of images?

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point

• Cues of edge detection

- Differences in color, intensity, or texture across the boundary
- Continuity and closure
- High-level knowledge

Designing an edge detector

- "All real edges"
 - We can aim to differentiate later on which edges are 'useful' for our applications.
 - If we can't find all things which *could* be called an edge, we don't have that choice.
- Is this possible?

Elder – Are Edges Incomplete? 1999

Figure 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. The original image contains edges over a broad range of contrasts and blur scales. In the middle are shown the edges detected with a Canny/Deriche operator tuned to detect structure in the mannequin. On the right is shown the edges detected with a Canny/Deriche operator tuned to detect the smooth contour of the shadow. Parameters are ($\alpha = 1.25$, $\omega = 0.02$) and ($\alpha = 0.5$, $\omega = 0.02$), respectively. See (Deriche, 1987) for details of the Deriche detector.

What information would we need to 'invert' the edge detection process?

Elder – Are Edges Incomplete? 1999

Edge 'code':

- position,
- gradient magnitude,
- gradient direction,
- blur.

Figure 8. Top left: Original image. Top right: Detected edge locations. Middle left: Intermediate solution to the heat equation. Middle right: Reconstructed luminance function. Bottom left: Reblurred result. Bottom right: Error map (reblurred result—original). Bright indicates overestimation of intensity, dark indicates underestimation. Edge density is 1.7%. RMS error is 10.1 grey levels, with a 3.9 grey level DC component, and an estimated 1.6 grey levels due to noise removal.

Where do humans see boundaries?

 Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB slides: Hays

pB boundary detector

pB Boundary Detector

Figure from Fowlkes

Results

Human (0.95)

Results

Human (0.95)

For more:

http://www.eecs.berkeley.edu/Research/Projects /CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

State of edge detection

- Local edge detection works well
 - 'False positives' from illumination and texture edges (depends on our application).
- Some methods to take into account longer contours
- Modern methods that actually "learn" from data.
- Poor use of object and high-level information.

Wednesday

- Classic Canny edge detector 22,000 citations
- Interest Points and Corners