


Last lecture: Edges primer

• Edge detection to identify

visual change in image

• Derivative of Gaussian 

and linear combination

of convolutions

• What is an edge?

What is a good edge?
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Canny edge detector

• Probably the most widely used edge detector 
in computer vision.

• Theoretical model: step-edges corrupted by 
additive Gaussian noise.

• Canny showed that first derivative of 
Gaussian closely approximates the operator 
that optimizes the product of signal-to-noise 
ratio and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE 

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

L. Fei-Fei

22,000 citations!

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Examples: Controversy and Appropriateness

‘Lena’ ‘Fabio’

Deanna Needell @ Claremont McKenna, 2012Alexander Sawchuk @ USC, 1973



If it wasn’t clear from class…

Use of Lena is now generally considered 

inappropriate, as it is not inclusive.

If you wish to include models, then please 

respect diversity.

We will approach diversity issues in more detail 

when we start to talk about machine learning 

and datasets.



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

Source: D. Lowe, L. Fei-Fei



Derivative of Gaussian filter

x-direction y-direction



Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei



Compute Gradient Magnitude

sqrt( X-Deriv.ofGaussian ^2  +  Y-Deriv.ofGaussian ^2 )       = gradient 

magnitude



Compute Gradient Orientation

Threshold magnitude at minimum level

Get orientation via theta = atan2(gy, gx)



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei



Non-maximum suppression for each orientation

At pixel q: 

We have a maximum if the 

value is larger than those at 

both p and at r. 

Interpolate along gradient 

direction to get these values.

Source: D. Forsyth



Sidebar: Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation


Sidebar: Interpolation options

• imx2 = imresize(im, 2, 
interpolation_type)

• ‘nearest’ 
– Copy value from nearest known

– Very fast but creates blocky edges

• ‘bilinear’
– Weighted average from four nearest known 

pixels

– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area (4x4)

– Slower, visually appealing, may create negative 
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation


Non-maximum suppression for each orientation

At pixel q: 

We have a maximum if the 

value is larger than those at 

both p and at r. 

Interpolate along gradient 

direction to get these values.

Source: D. Forsyth



Before Non-max Suppression

Gradient magnitude
James Hays



After non-max suppression

Gradient magnitude
James Hays



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding:

• Define two thresholds: low and high

• Use the high threshold to start edge curves and 

the low threshold to continue them

• ‘Follow’ edges starting from strong edge pixels
– Connected components (Szeliski 3.3.4)

Source: D. Lowe, L. Fei-Fei



‘Hysteresis’ thresholding

• Two thresholds – high and low

• Grad. mag. > high threshold? = strong edge

• Grad. mag. < low threshold? noise

• In between = weak edge

• ‘Follow’ edges starting from strong edge pixels

• Continue them into weak edges
– Connected components (Szeliski 3.3.4)

Source: S. Seitz



Final Canny Edges



Effect of  (Gaussian kernel spread/size)

Canny with Canny with Original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. Seitz



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding:

• Define two thresholds: low and high

• Use the high threshold to start edge curves and 

the low threshold to continue them

• ‘Follow’ edges starting from strong edge pixels
– Connected components (Szeliski 3.3.4)

MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei



James Hays



James Hays



Interest Points and Corners

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 4.1

“Interest points” = “keypoints” 

Sometimes called “features”



Correspondence across views

• Correspondence: matching points, patches, 
edges, or regions across images.

≈

James Hays



Example: estimate “fundamental matrix” 
that corresponds two views

Slide from Silvio Savarese



Example: structure from motion



Fundamental to Applications  

• Feature points are used for:
– Image alignment 

– 3D reconstruction

– Motion tracking

– Robot navigation

– Indexing and database retrieval

– Object recognition

James Hays



Example application

• Panorama stitching
• We have two images – how do we combine them?



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around 

each interest point as vector.

3) Matching: 
Compute distance between feature 

vectors to find correspondence.
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K. Grauman, B. Leibe



Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion

Kristen Grauman



Goal: interest operator repeatability

• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 

procedure independently per image.

No chance to find true matches!

Kristen Grauman



Goal: descriptor distinctiveness

• We want to be able to reliably determine which 

point goes with which.

• Must provide some invariance to geometric and 

photometric differences between the two views.

?

Kristen Grauman



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around 

each interest point as vector.

3) Matching:
Compute distance between feature 

vectors to find correspondence.



Detection: Basic Idea

• We do not know which other image 

locations the feature will end up being 

matched against.

• But we can compute how stable a 

location is in appearance with respect 

to small variations in position u.

• Compare image patch against 

local neighbors.

Source: A. Efros



Corner Detection: Mathematics

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) for shift [u,v]:



Corner Detection: Mathematics

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) 

for the shift [u,v]:



Corner Detection: Mathematics

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Change in appearance of window w(x,y) 

for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)



Inverted, and in 3D!

TPS Time
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E u v w x y I x u y v I x y   



Corner Detection: Basic Idea

• We might recognize the point by looking 
through a small window.

• We want a window shift in any direction to 
give a large change in intensity.

“Edge”:

no change 

along the edge 

direction

“Corner”:

significant 

change in all 

directions

“Flat” region:

no change in 

all directions

Source: A. Efros



Corner Detection: Mathematics

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for 

small shifts

Change in appearance of window w(x,y) 

for the shift [u,v]:

But this is very slow to compute naively.

O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 

14.6 thousand per pixel in your image



Corner Detection: Mathematics

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for 

small shifts.

Change in appearance of window w(x,y) 

for the shift [u,v]:

But we know the response in E that we are looking 

for – strong peak.



Recall: Taylor series expansion

A function f can be represented by an infinite series 

of its derivatives at a single point a:

Approximation of 

f(x) = ex 

centered at f(0)

Wikipedia

Set a = 0

(MacLaurin series) 

as window centered



Taylor expansion in 2D

Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the second-order 

Taylor expansion:
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Corner Detection: Mathematics

Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the second-order 

Taylor expansion:
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Set to 0
First 

derivative, 

set to 0



Corner Detection: Mathematics

The quadratic approximation simplifies to
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where M is a second moment matrix computed from image 

derivatives:
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 

neighborhood of a point).

Notation:

James Hays



The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the 

eigenvalues and the orientation is determined by R

direction of the 

slowest change

direction of the 

fastest change
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Diagonalization of M:

James Hays



Visualization of second moment matrices

James Hays



Visualization of second moment matrices

James Hays



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues of M:



Corner response function

“Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small

22

2121 )(trace)det()( MMR  

α: constant (0.04 to 0.06)

Determinant (det(A)):

Trace (trace(A)):

1

2



Harris corner detector

1) Compute M matrix for each image window to 

get their cornerness scores.

2) Find points whose surrounding window gave 

large corner response (f > threshold)

3) Take the points of local maxima, i.e., perform 

non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector [Harris88]

• Second moment matrix
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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(optionally, blur first)

James Hays



Harris Detector: Steps



Harris Detector: Steps

Compute corner response R



Harris Detector: Steps

Find points with large corner response: R>threshold



Harris Detector: Steps

Take only the points of local maxima of R



Harris Detector: Steps



Invariance and covariance

• We want corner locations to be invariant to photometric 

transformations and covariant to geometric transformations

• Invariance: image is transformed and corner locations do not change

• Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations


