

Last lecture: Edges primer

• Edge detection to identify

visual change in image

• Derivative of Gaussian

and linear combination

of convolutions

• What is an edge?

What is a good edge?

g
dx

d
f 

f

g
dx

d

Canny edge detector

• Probably the most widely used edge detector
in computer vision.

• Theoretical model: step-edges corrupted by
additive Gaussian noise.

• Canny showed that first derivative of
Gaussian closely approximates the operator
that optimizes the product of signal-to-noise
ratio and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

L. Fei-Fei

22,000 citations!

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Examples: Controversy and Appropriateness

‘Lena’ ‘Fabio’

Deanna Needell @ Claremont McKenna, 2012Alexander Sawchuk @ USC, 1973

If it wasn’t clear from class…

Use of Lena is now generally considered

inappropriate, as it is not inclusive.

If you wish to include models, then please

respect diversity.

We will approach diversity issues in more detail

when we start to talk about machine learning

and datasets.

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Source: D. Lowe, L. Fei-Fei

Derivative of Gaussian filter

x-direction y-direction

Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei

Compute Gradient Magnitude

sqrt(X-Deriv.ofGaussian ^2 + Y-Deriv.ofGaussian ^2) = gradient

magnitude

Compute Gradient Orientation

Threshold magnitude at minimum level

Get orientation via theta = atan2(gy, gx)

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei

Non-maximum suppression for each orientation

At pixel q:

We have a maximum if the

value is larger than those at

both p and at r.

Interpolate along gradient

direction to get these values.

Source: D. Forsyth

Sidebar: Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

• imx2 = imresize(im, 2,
interpolation_type)

• ‘nearest’
– Copy value from nearest known

– Very fast but creates blocky edges

• ‘bilinear’
– Weighted average from four nearest known

pixels

– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area (4x4)

– Slower, visually appealing, may create negative
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation

Non-maximum suppression for each orientation

At pixel q:

We have a maximum if the

value is larger than those at

both p and at r.

Interpolate along gradient

direction to get these values.

Source: D. Forsyth

Before Non-max Suppression

Gradient magnitude
James Hays

After non-max suppression

Gradient magnitude
James Hays

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding:

• Define two thresholds: low and high

• Use the high threshold to start edge curves and

the low threshold to continue them

• ‘Follow’ edges starting from strong edge pixels
– Connected components (Szeliski 3.3.4)

Source: D. Lowe, L. Fei-Fei

‘Hysteresis’ thresholding

• Two thresholds – high and low

• Grad. mag. > high threshold? = strong edge

• Grad. mag. < low threshold? noise

• In between = weak edge

• ‘Follow’ edges starting from strong edge pixels

• Continue them into weak edges
– Connected components (Szeliski 3.3.4)

Source: S. Seitz

Final Canny Edges

Effect of  (Gaussian kernel spread/size)

Canny with Canny with Original

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. Seitz

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding:

• Define two thresholds: low and high

• Use the high threshold to start edge curves and

the low threshold to continue them

• ‘Follow’ edges starting from strong edge pixels
– Connected components (Szeliski 3.3.4)

MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

James Hays

James Hays

Interest Points and Corners

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 4.1

“Interest points” = “keypoints”

Sometimes called “features”

Correspondence across views

• Correspondence: matching points, patches,
edges, or regions across images.

≈

James Hays

Example: estimate “fundamental matrix”
that corresponds two views

Slide from Silvio Savarese

Example: structure from motion

Fundamental to Applications

• Feature points are used for:
– Image alignment

– 3D reconstruction

– Motion tracking

– Robot navigation

– Indexing and database retrieval

– Object recognition

James Hays

Example application

• Panorama stitching
• We have two images – how do we combine them?

Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around

each interest point as vector.

3) Matching:
Compute distance between feature

vectors to find correspondence.

],,[)1()1(

11 dxx x

],,[)2()2(

12 dxx x

Td )x,x(21

1x

2x

K. Grauman, B. Leibe

Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric

and photometric transformations

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to

clutter and occlusion

Kristen Grauman

Goal: interest operator repeatability

• We want to detect (at least some of) the

same points in both images.

• Yet we have to be able to run the detection

procedure independently per image.

No chance to find true matches!

Kristen Grauman

Goal: descriptor distinctiveness

• We want to be able to reliably determine which

point goes with which.

• Must provide some invariance to geometric and

photometric differences between the two views.

?

Kristen Grauman

Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around

each interest point as vector.

3) Matching:
Compute distance between feature

vectors to find correspondence.

Detection: Basic Idea

• We do not know which other image

locations the feature will end up being

matched against.

• But we can compute how stable a

location is in appearance with respect

to small variations in position u.

• Compare image patch against

local neighbors.

Source: A. Efros

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) for shift [u,v]:

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y)

for the shift [u,v]:

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Change in appearance of window w(x,y)

for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)

Inverted, and in 3D!

TPS Time

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Corner Detection: Basic Idea

• We might recognize the point by looking
through a small window.

• We want a window shift in any direction to
give a large change in intensity.

“Edge”:

no change

along the edge

direction

“Corner”:

significant

change in all

directions

“Flat” region:

no change in

all directions

Source: A. Efros

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for

small shifts

Change in appearance of window w(x,y)

for the shift [u,v]:

But this is very slow to compute naively.

O(window_width2 * shift_range2 * image_width2)

O(112 * 112 * 6002) = 5.2 billion of these

14.6 thousand per pixel in your image

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for

small shifts.

Change in appearance of window w(x,y)

for the shift [u,v]:

But we know the response in E that we are looking

for – strong peak.

Recall: Taylor series expansion

A function f can be represented by an infinite series

of its derivatives at a single point a:

Approximation of

f(x) = ex

centered at f(0)

Wikipedia

Set a = 0

(MacLaurin series)

as window centered

Taylor expansion in 2D

Local quadratic approximation of E(u,v) in the

neighborhood of (0,0) is given by the second-order

Taylor expansion:




























v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

Corner Detection: Mathematics

Local quadratic approximation of E(u,v) in the

neighborhood of (0,0) is given by the second-order

Taylor expansion:




























v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

Set to 0
First

derivative,

set to 0

Corner Detection: Mathematics

The quadratic approximation simplifies to

2

2
,

(,)
x x y

x y x y y

I I I
M w x y

I I I

 
  

  


where M is a second moment matrix computed from image

derivatives:











v

u
MvuvuE][),(

M



















v

u

EE

EE
vuvuE

vvuv

uvuu

)0,0()0,0(

)0,0()0,0(
][),(











yyyx

yxxx

IIII

IIII
yxwM),(

x

I
I x






y

I
I y






y

I

x

I
II yx










Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in

neighborhood of a point).

Notation:

James Hays

The surface E(u,v) is locally approximated by a

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix











v

u
MvuvuE][),(















yx yyx

yxx

III

III
yxwM

,
2

2

),(

James Hays

Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.

const][








v

u
Mvu

James Hays

Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.

RRM 







 

2

11

0

0





The axis lengths of the ellipse are determined by the

eigenvalues and the orientation is determined by R

direction of the

slowest change

direction of the

fastest change

(max)
-1/2

(min)
-1/2

const][








v

u
Mvu

Diagonalization of M:

James Hays

Visualization of second moment matrices

James Hays

Visualization of second moment matrices

James Hays

Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all

directions

1 and 2 are small;

E is almost constant

in all directions

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region

Classification of image points using eigenvalues of M:

Corner response function

“Corner”

R > 0

“Edge”

R < 0

“Edge”

R < 0

“Flat”

region

|R| small

22

2121)(trace)det()(MMR  

α: constant (0.04 to 0.06)

Determinant (det(A)):

Trace (trace(A)):

1

2

Harris corner detector

1) Compute M matrix for each image window to

get their cornerness scores.

2) Find points whose surrounding window gave

large corner response (f > threshold)

3) Take the points of local maxima, i.e., perform

non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector [Harris88]

• Second moment matrix














)()(

)()(
)(),(

2

2

DyDyx

DyxDx

IDI
III

III
g






67

1. Image

derivatives

2. Square of

derivatives

3. Gaussian

filter g(I)

Ix Iy

Ix
2 Iy

2 IxIy

g(Ix
2) g(Iy

2) g(IxIy)

222222)]()([)]([)()(yxyxyx IgIgIIgIgIg  

])),([trace()],(det[2

DIDIhar  

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det

trace

M

M

 

 



 

(optionally, blur first)

James Hays

Harris Detector: Steps

Harris Detector: Steps

Compute corner response R

Harris Detector: Steps

Find points with large corner response: R>threshold

Harris Detector: Steps

Take only the points of local maxima of R

Harris Detector: Steps

Invariance and covariance

• We want corner locations to be invariant to photometric

transformations and covariant to geometric transformations

• Invariance: image is transformed and corner locations do not change

• Covariance: if we have two transformed versions of the same image,

features should be detected in corresponding locations

