


PROJECT 1: HYBRID IMAGES
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Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around each 
interest point as vector.

3) Matching: 
Compute distance between feature 
vectors to find correspondence.
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Review: Interest points

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Harris, DoG, MSER



Review: Choosing an interest point detector

• Why choose?
– Collect more points with more detectors, for more possible matches

• What do you want it for?
– Precise localization in x-y: Harris
– Good localization in scale: Difference of Gaussian
– Flexible region shape: MSER

• Best choice often application dependent
– Harris-/Hessian-Laplace/DoG work well for many natural categories
– MSER works well for buildings and printed things

• There have been extensive evaluations/comparisons
– [Mikolajczyk et al., IJCV’05, PAMI’05]
– All detectors/descriptors shown here work well



Comparison of Keypoint Detectors

Tuytelaars Mikolajczyk 2008



Review: Local Descriptors

• Most features can be thought of as templates, 
histograms (counts), or combinations

• The ideal descriptor should be

– Robust and Distinctive

– Compact and Efficient

• Most available descriptors focus on 
edge/gradient information

– Capture texture information

– Color rarely used

K. Grauman, B. Leibe



Choosing a descriptor

• Again, need not stick to one

• For object instance recognition or stitching, 
SIFT or variant is a good choice



SIFT

• Find Difference of Gaussian scale-space extrema

• Post-processing

– Position interpolation

– Discard low-contrast points

– Eliminate points along edges

• Orientation estimation

• Descriptor extraction

– Motivation: We want some sensitivity to spatial 
layout, and illumination, but not too much – don’t 
want to match everything to everything!



SIFT Descriptor Extraction

• Given a keypoint with scale and orientation:

– Pick scale-space image which most closely matches 
estimated scale

– Resample image to match orientation OR

– Subtract detector orientation from vector to give 
invariance to general image rotation.



SIFT Descriptor Extraction

• Given a keypoint with scale and orientation
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SIFT Descriptor Extraction

• Within each 4x4 window
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SIFT Descriptor Extraction

• Extract 8 x 16 values into 128-dim vector

• Illumination invariance:

– Working in gradient space, so robust to I = I + b

– Normalize vector to [0…1]

• Robust to I = αI brightness changes

– Clamp all vector values > 0.2 to 0.2.

• Robust to “non-linear illumination effects” 

• Image value saturation / specular highlights

– Renormalize



Specular highlights



SIFT Review

• TA: Martin Zhu found this tutorial

• http://aishack.in/tutorials/sift-scale-invariant-
feature-transform-features/

• Lowe’s original paper

• http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

http://aishack.in/tutorials/sift-scale-invariant-feature-transform-features/
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Review: Interest points

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Harris, DoG

• Descriptors: robust and selective

– Spatial histograms of orientation

– SIFT



Feature Matching and Robust Fitting

Many slides from James Hays, Derek Hoiem, and Grauman&Leibe 2008 AAAI Tutorial

Read Szeliski 4.1



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around each 
interest point as vector.

3) Matching: 
Compute distance between feature 
vectors to find correspondence.
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Think-Pair-Share

• Design a feature point matching scheme.

• Two images, I1 and I2

• Two sets X1 and X2 of feature points
– Each feature point x1 has a descriptor 

• Distance, bijective/injective/surjective, noise, 
confidence, computational complexity, 
generality
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Distance: 0.34, 0.30, 0.40

Distance: 0.61, 1.22

How do we decide which features match?



Feature Matching

• Criteria 1: 

– Compute distance in feature space, e.g., dot 
product between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)

• Problems:

– Does everything have a match?



Feature Matching

• Criteria 2: 

– Compute distance in feature space, e.g., dot 
product between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)

– Ignore anything higher than threshold (no match!)

• Problems:

– Threshold is hard to pick

– Non-distinctive features could have lots of close 
matches, only one of which is correct



Nearest Neighbor Distance Ratio

•
𝑁𝑁1

𝑁𝑁2
where NN1 is the distance to the first 

nearest neighbor and NN2 is the distance to 
the second nearest neighbor.

• Sorting by this ratio puts matches in order of 
confidence.



Matching Local Features

• Nearest neighbor (Euclidean distance)

• Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004



Bi-directionality / Compute cost

• Check that feature point matches hold from 
image 1 to image 2, and from image 2 to 
image 1.

• Naïve computation: Expensive

• Form all descriptors as matrix, multiply for dot 
products.



HOW GOOD IS SIFT?



SIFT Repeatability

Lowe IJCV 2004



SIFT Repeatability

Lowe IJCV 2004



SIFT Repeatability
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SIFT Repeatability
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