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PROJECT 1: HYBRID IMAGES



CSCI1 1430 Project 1 Mark Distribution Histogram
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Local features: main components

1) Detection:

Find a set of distinctive key points.

Description:
Extract feature descriptor around each
interest point as vector.

X, X1:[X1(1),...,X(§1)]

Matching:
Compute distance between feature
vectors to find correspondence.

d(X;,X,)<T

K. Grauman, B. Leibe



Review: Interest points

* Keypoint detection: repeatable
and distinctive
— Corners, blobs, stable regions
— Harris, DoG, MSER

(a) Gray scale input image (b) Detected MSERS



Review: Choosing an interest point detector

Why choose?
— Collect more points with more detectors, for more possible matches

What do you want it for?
— Precise localization in x-y: Harris
— Good localization in scale: Difference of Gaussian
— Flexible region shape: MSER

Best choice often application dependent
— Harris-/Hessian-Laplace/DoG work well for many natural categories
— MSER works well for buildings and printed things

There have been extensive evaluations/comparisons
— [Mikolajczyk et al., IJCV’05, PAMI’05]
— All detectors/descriptors shown here work well



Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

Rotation Scale Affine Localization
Feature Detector | Corner Blob  Region invariant invariant  invariant | Repeatability ACCUracy Robustness Efficiency
Harris Vv Vv +++ +++ +++ ++
Hessian Vv Vv ++ ++ +4+ +
SUSAN Vv Vv ++ ++ ++ +++
Harris-Laplace v (v) v Vv +++ +++ ++ +
Hessian-Laplace (+/) v w4 w4 4+ R 444 +
Dotz (v Vv Vv Vv ++ ++ ++ ++
SURF (v) v Vv Vv ++ ++ 4+ 4+
Harris-Affine v (V) v v v +++ +++ ++ ++
Hessian-Affine (v Vv Vv Vv Vv +++ +++ +++ +4+
Salient Regions (v v v Vi (v 4 + 4+ +
Edge-based v v i 44+ 4t 4 n
MSER Vv Vv N / +++ +++ ++ +++
Intensity-based v v v v ++ 4+ 44 4+
Superpixels V' V' (/) (v) + + + +

Tuytelaars Mikolajczyk 2008



Review: Local Descriptors

* Most features can be thought of as templates,
histograms (counts), or combinations

* The ideal descriptor should be 7777 }
— Robust and Distinctive ( S RNGh ) —>
NI EE N\
— Compact and Efficient s

* Most available descriptors focus on
edge/gradient information

— Capture texture information
— Color rarely used

K. Grauman, B. Leibe




Choosing a descriptor

* Again, need not stick to one

* For object instance recognition or stitching,
SIFT or variant is a good choice



SIFT

* Find Difference of Gaussian scale-space extrema

* Post-processing
— Position interpolation
— Discard low-contrast points
— Eliminate points along edges

* Orientation estimation

* Descriptor extraction

— Motivation: We want some sensitivity to spatial
layout, and illumination, but not too much — don’t
want to match everything to everything!



SIFT Descriptor Extraction

* Given a keypoint with scale and orientation:

— Pick scale-space image which most closely matches
estimated scale

— Resample image to match orientation OR

— Subtract detector orientation from vector to give
invariance to general image rotation.
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SIFT Descriptor Extraction

* Given a keypoint with scale and orientation

16x16 window

128 dimensional vector
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SIFT Descriptor Extraction

e Within each 4x4 window

“a alls "4
Gradient | x A /< 8 bin ‘histogram’
magnitude ¥ - add magnitude
and /| x | \< amounts!
orientation ¢ = x
\ i

Weight magnitude
that is added to
‘histogram’ by
Gaussian

Utkarsh Sinha



SIFT Descriptor Extraction

e Extract 8 x 16 values into 128-dim vector

e |llumination invariance:

— Working in gradient space, so robustto/=/+b
— Normalize vector to [0...1]
* Robust to / = al brightness changes

— Clamp all vector values > 0.2 to 0.2.
* Robust to “non-linear illumination effects”
* Image value saturation / specular highlights

— Renormalize



Specular highlights




SIFT Review

TA: Martin Zhu found this tutorial

http://aishack.in/tutorials/sift-scale-invariant-

feature-transform-features/

Lowe’s original paper
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



http://aishack.in/tutorials/sift-scale-invariant-feature-transform-features/
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Review: Interest points

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG

* Descriptors: robust and selective

— Spatial histograms of orientation
— SIFT




Feature Matching and Robust Fitting

Read Szeliski 4.1



Local features: main components

1) Detection:
Find a set of distinctive key points.

Description:
Extract feature descriptor around each
interest point as vector.

X, X1:[X1(1),...,X§1)]

Matching:
Compute distance between feature
vectors to find correspondence.

K. Grauman, B. Leibe



Think-Pair-Share

* Design a feature point matching scheme.
 Two images, /; and /, L

* Two sets X; and X, of feature points
— Each feature point x, has a descriptor x, =[x",...,x{"

* Distance, bijective/injective/surjective, noise,
confidence, computational complexity,
generality



How do we decide which features match2

Distance: 0.34, 0.30, 0.40
Distance: 0.61, 1.22




Feature Matching

* Criteria 1:

— Compute distance in feature space, e.g., dot
product between 128-dim SIFT descriptors

— Match point to lowest distance (nearest neighbor)

* Problems:
— Does everything have a match?



Feature Matching

* Criteria 2:

— Compute distance in feature space, e.g., dot
product between 128-dim SIFT descriptors

— Match point to lowest distance (nearest neighbor)
— Ignore anything higher than threshold (no match!)

* Problems:
— Threshold is hard to pick

— Non-distinctive features could have lots of close
matches, only one of which is correct



Nearest Neighbor Distance Ratio

NN1 . . .
2 where NN1 is the distance to the first

nearest neighbor and NN2 is the distance to
the second nearest neighbor.

* Sorting by this ratio puts matches in order of
confidence.



Matching Local Features

* Nearest neighbor (Euclidean distance)
* Threshold ratio of nearest to 2"d nearest descriptor
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Lowe IJCV 2004



Bi-directionality / Compute cost

* Check that feature point matches hold from
image 1 to image 2, and from image 2 to
Image 1.

* Naive computation: Expensive

* Form all descriptors as matrix, multiply for dot
products.



HOW GOOD IS SIFT?



Repeatability (%)

SIFT Repeatability
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SIFT Repeatability
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SIFT Repeatability
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SIFT Repeatability
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The top 100 most confident local feature marches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in

green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

CSCI 1430: Introduction to Computer Vision

Brief

* Due: 9:00pm on Friday, 24th February, 2016

* Project materials including writeup template proj2.zip (6.9 MB).
* Additional scenes to test on extra_data zip (194 MB).

* Handin: through $ csr430_handin proj2

* Required files: README, code/, html/, html/index html



