


Multi-stable Perception

Necker Cube



Spinning dancer illusion, Nobuyuki Kayahara





Given matches, what is the transformation?



Example: discovering translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x



Example: discovering rot/trans/scale

A1

A2 A3

Given matched points in {A} and {B}, estimate the transformation matrix




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x










dc

ba



Parametric (global) transformations

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– T is the same for any point p
T can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
T

'

'



Common transformations

Translation Rotation Scaling

Affine Perspective

Original

Transformed

Slide credit (next few slides): 

A. Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its 

components by a scalar

• Uniform scaling means this scalar is the same for all 
components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx





'

'



























y

x

b

a

y

x

0

0

'

'

scaling matrix S



2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

x

y



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

T
RR 1

R



Basic 2D transformations

TranslateRotate

ShearScale



























y

x

y

x

y

x

1

1

'

'



































y

x

y

x

cossin

sincos

'

'



























y

x

s

s

y

x

y

x

0

0

'

'







































1
10

01
y

x

t

t

y

x

y

x







































1

y

x

fed

cba

y

x

Affine

Affine is any combination of 

translation, scale, rotation, and shear



Affine Transformations

Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition







































1

y

x

fed

cba

y

x



















































11001

'

'

y

x

fed

cba

y

x

or



2D image transformations (reference table)

Szeliski 2.1

‘Homography’



Projective Transformations












































w

y
x

ihg

fed
cba

w

y
x

'

'
'Projective transformations are combos of 

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)



Example: vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi



Given matches, what is the transformation?



Fitting: 

Find the parameters of a model that best fit 
the data.

Alignment: 

Find the parameters of the transformation 
that best aligns matched points.

Fitting and Alignment



Fitting and Alignment

• Challenges
– Design a suitable goodness of fit measure

• Similarity should reflect application goals

• Encode robustness to outliers and noise

– Design an optimization method
• Avoid local optima

• Find best parameters quickly

– Typically want to solve for a global transformation 
that accounts for the most true correspondences

• Noise (typically 1-3 pixels)

• Outliers (often 50%) 

• Many-to-one matches or multiple objects



Fitting and Alignment: Methods

• Global optimization / search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC



Fitting and Alignment: Methods

• Global optimization / search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC



Simple example: Fitting a line



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 

022  yAApA
TT

dp

dE

 

2

11

1

2

1

1

1
































































 

nn

n

i ii

y

y

b

m

x

x

y
b

m
xE 

 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

  yAAApyAApA
TTTT 1



Matlab: p = A \ y;

Modified from S. Lazebnik

)()()(2 ApApyApyy
TTT 

2
yAp 

(Closed form solution)



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x



Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=p

b) Solve using closed-form solution





























































A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01



Least squares (global) optimization

Good

• Clearly specified objective

• Optimization is easy

Bad

• Sensitive to outliers

– Bad matches, extra points

• Doesn’t allow you to get multiple good fits

– Detecting multiple objects, lines, etc.



Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 

 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

Matlab: p = A \ y;

Modified from S. Lazebnik

(Closed form solution)



Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters ϴ

   ;,ii

i

xu

The robust function ρ
• Favors a configuration 

with small residuals

• Constant penalty for large 

residuals

 


n

i ii bxmyu
1

22 )(

Slide from S. Savarese

ρ – robust function with scale parameter σ



Choosing the scale: Just right

The effect of the outlier is minimized



The error value is almost the same for every

point and the fit is very poor

Choosing the scale: Too small



Choosing the scale: Too large

Behaves much the same as least squares



Robust estimation: Details

• Robust fitting is a nonlinear optimization 
problem that must be solved iteratively

• Scale of robust function should be chosen 
adaptively based on median residual 

• Least squares solution can be used for 
initialization



Other ways to search for parameters 
for when no closed form solution exists

Line search
1. For each parameter, step through values and choose value 

that gives best fit
2. Repeat (1) until no parameter changes

Grid search
1. Propose several sets of parameters, evenly sampled in the 

joint set
2. Choose best (or top few) and sample joint parameters around 

the current best; repeat

Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient



Hypothesize and test

1. Propose parameters
– Try all possible

– Each point votes for all consistent parameters

– Repeatedly sample enough points to solve for parameters

2. Score the given parameters
– Number of consistent points, possibly weighted by 

distance

3. Choose from among the set of parameters
– Global or local maximum of scores

4. Possibly refine parameters using inliers



Fitting and Alignment: Methods

• Global optimization / search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit 

to a known model.



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit 

to a known model.

Here, we expect to see a line, but least-

squares fitting will produce the wrong result 

due to strong outlier presence.



RANSAC

Algorithm:

1. Sample (randomly) the number of points s required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6InliersN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14InliersN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x



Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4



RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of objective function parameters 

than Hough transform
• Optimization parameters are easier to choose than Hough 

transform

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)



What if we want to align…
but we have no matched pairs?

• Hough transform and RANSAC not applicable

(tx, ty)

Problem: no initial guesses for correspondence



Medical imaging: match brain 

scans or contours
Robotics: match point clouds

Kwok and Tang

Important applications



Iterative Closest Points (ICP) Algorithm

Goal: 

Estimate transform between two dense point sets S1 and S2

1. Initialize transformation 
• Compute difference in mean positions, subtract

• Compute difference in scales, normalize

2. Assign each point in S1 to its nearest neighbor in S2

3. Estimate transformation parameters T
– Least squares or robust least squares, e.g., rigid transform

4. Transform the points in S1 using estimated parameters T

5. Repeat steps 2-4 until change is very small (convergence)



ICP demonstration

Bouaziz et al.



Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding 
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Transform points p according to T

6. Repeat 3-5 until convergence

p
q



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence





Algorithm Summaries
• Least Squares Fit 

– Closed form solution
– Robust to noise
– Not robust to outliers

• Robust Least Squares
– Improves robustness to outliers
– Requires iterative optimization

• RANSAC
– Robust to noise and outliers
– Works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences
– Sensitive to initialization 

• Hough transform
– Robust to noise and outliers
– Can fit multiple models
– Only works for a few parameters (1-4 typically)



Feedback form

• Will send out later today

• 3 simple questions – good / bad / you.

• Please fill it in.


