

Future Vision

2017 MWF 1PM 368 Computer Vision

Review

- Model fitting
- Least squares / robust least squares
- RANSAC
- Iterative Closest Points
- Models
- 2D image transformations

Review: RANSAC

Algorithm:

$$
N_{I}=14
$$

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Review: 2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

What if I want to fit multiple models? What if my lines are in segments?

http://ostatic.com/files/images/ss_hough.jpg

Start with edge detection \rightarrow Canny

Edge gradients

- Equation of line: $y=m x+b$
- Recall: when we detect an edge pixel, we can estimate its gradient m.
- With the (x, y) position of the pixel, we can estimate b.
- Thus, each edge pixel (edgel!) represents a line.
- Hough transform:

What if each edge pixel voted for the line it might represent?

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid.

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid.

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid.

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid.

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid.

Hough Transform: Outline

- Create a grid of candidate m, b parameter values.
- Why a grid?
- m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid.
- Find maxima - our line candidates.

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?
- Think-Pair-Share as orientation varies - ramifications!

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?
- Unoriented point is line is Hough space.

Hough Transform: Step back

- Hough space represents all possible lines.
- With gradient information constriction:
- Edgel is single point in Hough space.
- Without gradient orientation information?
- How big is Hough space?

Hough Transform: Line Normal Form

- Use $\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$
- Space is 0 to 360
- Use $r=$ distance to line from some origin
- $r_{i}=x_{i} \cos \theta_{i}+y_{i} \sin \theta_{i}$
- Space is $\pm \sqrt{\text { max_ }_{-} x^{2}+\text { max_ }_{-} y^{2}}$

Hough Transform: Line Normal Form

- In this line form, unoriented edge draws a sinusoid in Hough space.

Hough transform - experiments

Next few images ignore edge orientation.
Each point is one sinusoid.

Image

Hough transform - experiments

Noisy data

Image

Need to adjust grid size or smooth

Hough transform - experiments

Issue: spurious peaks due to uniform noise

Hough transform example

1. Image \rightarrow Canny

2. Canny \rightarrow Hough votes

3. Hough votes \rightarrow Edges

Find peaks and post-process.

Finding lines using Hough transform

- Using known edge orientation to vote for a single line (rather than accumulate over all θ).
- Practical considerations
- Bin size
- Smoothing
- Finding multiple lines
- Finding line segments
- Can 'fit' line to edgels that 'survive the vote' for more precise estimation.

Hough transform conclusions

Good

- Robust to outliers: each point votes separately.
- Edge orientation -> fairly efficient (faster than trying all parameter sets).
- Provides multiple model fitting.

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
- Can be hard to find sweet spot.
- Not suitable for more than a few parameters
- Grid size grows exponentially.

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

Computer Vision c. 2007

FEATURE DETECTION

AND MATCHING - DONE.

Overview of Keypoint Matching

5. Match local descriptors

Object Instance Recognition

1. Match keypoints to object model
2. Solve for affine transformation parameters
3. Score by inliers and choose solutions with score above threshold

Finding objects (SIFT, Lowe 2004)

1. Match interest points from input image to database image.
2. Get location/scale/orientation using Hough voting.

- In database image, each point has known position/scale/orientation wrt. whole object.
- Matched points vote for the position, scale, and orientation of the entire object.
- Bins for x, y, scale, orientation
- Wide bins (0.25 object length in position, $2 x$ scale, 30 degrees orientation)
- Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification for each bin with at least 3 keypoints

- Iterate least squares fit and checking for inliers and outliers
- (Advanced) Compute affine registration to check model fit.

4. Report object if $>T$ inliers (T is typically 3 , can be computed to match some probabilistic threshold)

Examples of recognized objects

CAMERAS, MULTIPLE VIEWS, AND MOTION

What is a camera?

Google

Translate

French English	Italian	Detect language	\checkmark	$\stackrel{ }{4}$
camera				\times
4) ${ }^{-1}$				6/5000

Synonyms of camera

noun
vano, camera da letto
$\checkmark 4$ more synonyms

See also

camera da letto, camera doppia, camera singola, servizio in camera, camera d'aria, camera oscura, camera libera, camera mortuaria, camera dei bambini, camera con colazione

Translate

room

```
&)
```

Translations of camera
noun
room camera, stanza, sala, ambiente, spazio, locale

- chamber camera, cavità, aula
- house casa, abitazione, edificio, dimora, camera, albergo
- apartment appartamento, alloggio, camera, stanza
- lodging alloggio, alloggiamento, appartamento, camera

Camera obscura: dark room

- Known during classical period in China and Greece (e.g., Mo-Ti, China, 470BC to 390BC)

Freestanding camera obscura at UNC Chapel Hill
Photo by Seth llys

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568
Camera lucida

Tim's Vermeer

Vermeer, The Music Lesson, 1665

Tim Jenison (Lightwave 3D, Video Toaster)

Tim's Vermeer - video still

First Photograph

Oldest surviving photograph

- Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

The Geometry of Image Formation Szeliski 2.1, parts of 2.2

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
- Vanishing points and lines
- Projection matrix

Dimensionality Reduction Machine (3D to 2D)

3D world

2D image

Point of observation

Lake Sørvágsvatn in Faroe Islands

100 metres above sea level

Lake Sørvágsvatn in Faroe Islands

Holbein's The Ambassadors - 1533

Holbein's The Ambassadors - Memento Mori

Cameras and World Geometry

Let's design a camera

Idea 1: Put a sensor in front of an object Do we get a reasonable image?

Let's design a camera

Idea 2: Add a barrier to block most rays

- Pinhole in barrier
- Only sense light from one direction.
- Reduces blurring.
- In most cameras, this aperture can vary in size.

Pinhole camera model

$\mathrm{f}=$ Focal length
c = Optical center of the camera

Projection: world coordinates \rightarrow image coordinates

p = distance from

$$
U=-X * \frac{f}{Z} \quad V=-Y * \frac{f}{Z}
$$ image center

What is the effect if f and Z are equal?

Projective Geometry

Length (and so area) is lost.

Length and area are not preserved

Figure by David Forsyth

Projective Geometry

Angles are lost.

Projective Geometry

What is preserved?

- Straight lines are still straight.

Vanishing points and lines

Parallel lines in the world intersect in the projected image at a "vanishing point".

Parallel lines on the same plane in the world converge to vanishing points on a "vanishing line".
E.G., the horizon.

Vanishing points and lines

Photo Tourism
 Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington

Pinhole camera model

$\mathrm{f}=$ Focal length
c = Optical center of the camera

Projection: world coordinates \rightarrow image coordinates

p = distance from

$$
U=-X * \frac{f}{Z} \quad V=-Y * \frac{f}{Z}
$$ image center

What is the effect if f and Z are equal?

Camera (projection) matrix

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}
$$

Extrinsic Matrix
x: Image Coordinates: ($u, v, 1$)
K: Intrinsic Matrix (3×3)
R: Rotation (3x3)
t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Projective geometry

- 2D point in cartesian $=(x, y)$ coordinates
- 2D point in projective $=(x, y, w)$ coordinates

Projective geometry

- 2D point in cartesian $=(x, y)$ coordinates
- 2D point in projective $=(\mathrm{x}, \mathrm{y}, \mathrm{w})$ coordinates

Varying w

W_{1}

$$
\mathrm{W}_{2}<\mathrm{W}_{1}
$$

Projected image becomes smaller.

Projective geometry

- 2D point in projective $=(x, y, w)$ coordinates
$-w$ defines the scale of the projected image.
- Each x,y point becomes a ray!

Projective geometry

- In 3D, point (x, y, z) becomes (x, y, z, w)
- Perspective is w varying with z :
- Objects far away are appear smaller

Homogeneous coordinates

Converting to homogeneous coordinates

$$
\begin{aligned}
& (x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \\
& \text { 2D (image) coordinates }
\end{aligned} \text { 3D (scene) coordinates }
$$

2 D (image) coordinates

Converting from homogeneous coordinates

$$
\begin{array}{ll}
{\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)} & {\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]} \\
\text { 2D (image) coordinates } & \text { 3D (scene) coordinates }
\end{array}
$$

Homogeneous coordinates

Scale invariance in projection space

$$
\begin{gathered}
\qquad\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
k x \\
k y \\
k w
\end{array}\right]
\end{gathered} \underset{\text { Comogeneous }}{\text { Coordinates }} \underset{\text { Coortesian }}{\left[\begin{array}{c}
\frac{k x}{k w} \\
\frac{k y}{k w}
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{w} \\
\frac{y}{w}
\end{array}\right]}
$$

E.G., we can uniformly scale the projective space, and it will still produce the same image -> scale ambiguity

Camera (projection) matrix

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}
$$

Extrinsic Matrix
x: Image Coordinates: ($u, v, 1$)
K: Intrinsic Matrix (3×3)
R: Rotation (3x3)
t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- Optical center at $(0,0)$
- No skew
- No rotation
- Camera at $(0,0,0)$

Projection: world coordinates \rightarrow image coordinates

Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{c}
u \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc|c}
-f & 0 & u_{0} \\
0 & f & u_{0} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
y & z \\
z \\
1
\end{array}\right]
$$

Remove assumption: equal aspect ratio

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Intrinsic Assumptions } \\
\bullet \text { •No skew } & \\
& \text { Extrinsic Assumptions } \\
& \text { • No rotation } \\
& \text { Camera at }(0,0,0)
\end{array} \\
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \leadsto w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 f_{x} & 0 & u_{0} & 0 \\
10 & f_{y} & v_{0} & 0 \\
1 \\
10 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{array}
$$

Remove assumption: non-skewed pixels

> Intrinsic Assumptions Extrinsic Assumptions
> - No rotation
> - Camera at (0,0,0)

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions
Extrinsic Assumptions

- No rotation

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & s & u_{0} \\
0 & f_{y} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

Allow camera rotation

$$
\begin{gathered}
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X} \\
\boldsymbol{v} \\
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & s & u_{0} \\
0 & f_{y} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & r_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{gathered}
$$

Demo - Kyle Simek

- "Dissecting the Camera Matrix"
- Three-part blog series
- http://ksimek.github.io/2012/08/14/decompose/
- http://ksimek.github.io/2012/08/22/extrinsic/
- http://ksimek.github.io/2013/08/13/intrinsic/
- "Perspective toy"
- http://ksimek.github.io/perspective camera toy.html

Orthographic Projection

- Special case of perspective projection
- Distance from the COP to the image plane is infinite

Field of View (Zoom, focal length)

From London and Upton

Beyond Pinholes: Radial Distortion

No Distortion

Barrel Distortion

Pincushion Distortion

Corrected Barrel Distortion

Beyond Pinholes: Real apertures

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman

Accidental Cameras

a) Input (occluder present)

b) Reference (occluder absent)
c) Difference image (b-a) d) Crop upside down

e) True view

Things to remember

- Vanishing points and vanishing lines

- Pinhole camera model and camera projection matrix

$$
x=K\left[\begin{array}{ll}
R & t
\end{array}\right] X
$$

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

IS THIS ENOUGH?

