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Review

* Model fitting
— Least squares / robust least squares
— RANSAC
— Iterative Closest Points

 Models
— 2D image transformations



Review: RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




Review: 2D image transformations

A
) similarity P1o) ﬂm ©
translation
/"y
Euclidean aﬂme >
~— x
Name Matrix # D.O.F. | Preserves: Icon
translation [ I ‘ t ]2 ; 2 orientation + - - -
oy
rigid (Euclidean) [ R ‘ t ]2 ; 3 lengths + - - - O
oy
similarity [ sR | t ]2 \ 4 angles + - - - O
oy
afline [ A ]ng 6 parallelism + - - - E
projective [ H ]3){3 8 straight lines E|

Szeliski 2.1



What if | want to fit multiple models?
What if my lines are in segments?

http://ostatic.com/files/images/ss_hough.jpg
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Edge gradients

e Equationofline: y=mx+Db

e Recall: when we detect an VF= [g g}
edge pixel, we can estimate
its gradient m.

e With the (x,y) position of the
pixel, we can estimate b.

e Thus, each edge pixel (edgel!) represents a line.

e Hough transform:
What if each edge pixel voted for the line it might represent?

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures,
Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959.



Hough Transform: Outline

Create a grid of candidate m,b parameter values.
* Why a grid?

m,b are continuous; grid discretizes into hypotheses.

Edge image

+m

Parameter space (Hough space)




Hough Transform: Outline

* Create a grid of candidate m,b parameter values.

* Why a grid?

* m,b are continuous; grid discretizes into hypotheses.

* Each edge pixel votes for a set of parameters, which
increments those values in grid.

Edge image

+m

Parameter space (Hough space)

+1




Hough Transform: Outline

* Create a grid of candidate m,b parameter values.
* Why a grid?
* m,b are continuous; grid discretizes into hypotheses.

* Each edge pixel votes for a set of parameters, which
increments those values in grid.

Edge image Parameter space (Hough space)

+m

Each line in
image is a
point (or cell) in
Hough space.

+100

-b +b



Hough Transform: Outline

* Create a grid of candidate m,b parameter values.

* Why a grid?

* m,b are continuous; grid discretizes into hypotheses.

* Each edge pixel votes for a set of parameters, which
increments those values in grid.

Edge image

+m

Parameter space (Hough space)
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Hough Transform: Outline

* Create a grid of candidate m,b parameter values.

* Why a grid?

* m,b are continuous; grid discretizes into hypotheses.

* Each edge pixel votes for a set of parameters, which
increments those values in grid.

Edge image

+m

Parameter space (Hough space)
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Hough Transform: Outline

* Create a grid of candidate m,b parameter values.
* Why a grid?
* m,b are continuous; grid discretizes into hypotheses.

* Each edge pixel votes for a set of parameters, which
increments those values in grid.

Edge image Parameter space (Hough space)
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Hough Transform: Outline

* Create a grid of candidate m,b parameter values.
* Why a grid?
* m,b are continuous; grid discretizes into hypotheses.
* Each edge pixel votes for a set of parameters, which
increments those values in grid.

* Find maxima — our line candidates.

Edge image Parameter space (Hough space)




Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:

* Edgelis single point in Hough space.
* Without gradient orientation information?

* Think-Pair-Share as orientation varies — ramifications!

Image space

+m

Parameter space (Hough space)




Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:
e Edgelis single point in Hough space.

* Without gradient orientation information?

Image space

+m

Parameter space (Hough space)




Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:
e Edgelis single point in Hough space.

* Without gradient orientation information?
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Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:
e Edgelis single point in Hough space.

* Without gradient orientation information?
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Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:
e Edgelis single point in Hough space.

* Without gradient orientation information?

Image space

+m

Parameter space (Hough space)




Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:

Edgel is single point in Hough space.
* Without gradient orientation information?

Unoriented point is line is Hough space.

Image space

+m

Parameter space (Hough space)




Hough Transform: Step back

 Hough space represents all possible lines.
* With gradient information constriction:
Edgel is single point in Hough space.

* Without gradient orientation information?

How big is Hough space?

Image space

+m

Problem.
m = inf

b = -inf
How to fix?

-b

Parameter space (Hough space)




Hough Transform: Line Normal Form

— [o0f of
+ Use 0= tan—1(3L/20) \%W[ax,ay}
* Spaceis 0to 360

* Use r =distance to line from some origin
* I =X C0SE, +Y.sSIn6.

* Space is +1/max_x2 + max _y?

Image space Parameter space (Hough space)

+r




Hough Transform: Line Normal Form

* In this line form, unoriented edge
draws a sinusoid in Hough space.

Image space

+r

Parameter space (Hough space)




Hough transform - experiments

Next few images ignore edge orientation.
Each point is one sinusoid.

X >0
Image r,© model parameter histogram

Slide from S. Savarese



Hough transform - experiments

Noisy data

Image r,© model parameter histogram

Need to adjust grid size or smooth

Slide from S. Savarese



Hough transform - experiments

Image X 0,8 model parameter histogram

Issue: spurious peaks due to uniform noise

Slide from S. Savarese



Hough transform example

7 “Image ‘ Hough Transform

http://ostatic.com/files/images/ss_hough.jpg



Image = Canny
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Hough votes - Edges

3

process.

Find peaks and post-




Finding lines using Hough transform

* Using known edge orientation to vote for a
single line (rather than accumulate over all 0).

* Practical considerations
— Bin size
— Smoothing
— Finding multiple lines
— Finding line segments
e Can ‘fit’ line to edgels that ‘survive the vote’
for more precise estimation.



Hough transform conclusions

Good

* Robust to outliers: each point votes separately.
* Edge orientation -> fairly efficient (faster than trying all parameter sets).
* Provides multiple model fitting.

Bad

* Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and
speed/memory

— Can be hard to find sweet spot.

* Not suitable for more than a few parameters
— Grid size grows exponentially.

Common applications

e Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
* Object category recognition (parameters are position/scale)



FEATURE DETECTION
AND MATCHING — DONE.



Overview of Keypoint Matching

1. Find a set of
distinctive key-
points

2. Define aregion
around each
keypoint

3. Extract and
normalize the
region content

f, fo
4. Compute a local
h]]ﬂmm]]_ — h]]ﬂm]]]ﬂ_ . descriptor from the
e.g. color e.g. color normahzed reg|on
’ d(f,, fg)<T

5. Match local
descriptors

K. Grauman, B. Leibe



Object Instance Recognition

1. Match keypoints to
object model

Matched

keypoints

2. Solve for affine ‘
transformation

parameters Affine
Parameters

4

3. Score by inliers and .
] ] # Inliers

choose solutions with ‘
score above threshold

Choose hypothesis with max
score above threshold




Finding objects (SIFT, Lowe 2004)

1. Match interest points from input image to database image.
2. Get location/scale/orientation using Hough voting.

— In database image, each point has known
position/scale/orientation wrt. whole object.

— Matched points vote for the position, scale, and orientation
of the entire object.

— Bins for x, y, scale, orientation
. Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)
. Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification for each bin with at least 3 keypoints
— Iterate least squares fit and checking for inliers and outliers
— (Advanced) Compute affine registration to check model fit.

4. Report object if > T inliers (T is typically 3, can be computed to
match some probabilistic threshold)



Examples of recognized objects




CAMERAS, MULTIPLE VIEWS,
AND MOTION



What is a camera?



Google # 0 &

Translate Tumn off instant translation o
French English ltalian Detect language - *%  English French ltalian ~
X

camera rnoom
<) B - gsoo0 | 0 D O < ’
Synonyms of camera Translations of camera
noun

vano, camera da letto noun _ _

4 more synonyms e rOOm camera, stanza, sala, ambiente, spazio, locale

== chamber camera, cavita, aula
See also = house casa, abitazione, edificio, dimora, camera, albergo
) . o = apartment appartamento, alloggio, camera, stanza

camera da letto, camera doppia, camera singola, servizio in camera, . . .
camera d'aria, camera oscura, camera libera, camera mortuaria, = lodging alloggio, alloggiamento, appartamento, camera

camera del bambini, camera con colazione

Google Translate for Business:  Translator Toolkit Website Translator Global Market Finder



Camera obscura: dark room

* Known during classical period in China and Greece
(e.g., Mo-Ti, China, 470BC to 390B(C)

[llustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth llys



Camera obscura / lucida used for tracing

S risar'os Ay ( /,.,,',/, G Dollend. sl iho: (lometie Fured

Fig. 434>

Lens Based Camera Obscura, 1568 Camera lucida



Tim’s Vermeer

NEW YORK TORONTO TELLURIDE

“AWE-INSPIRING! PENN AND mu.:n's'smtum DOCUMENTARY."

4

‘SO EIIERTAININO AUDIENCES IIARM.Y EVEN REALIZE HOW mcsumm s ISI"

“YHIIIUJNG 1'0 WA‘I'CIII"

"Tlms Vermeer

A Penn & Teller Film

Vermeer, The Music Lesson, 1665 Tim Jenison (Lightwave 3D, Video Toaster)



Tim’s Vermeer — video still




First Photograph

Oldest surviving photograph

Photograph of the first photograph
— Took 8 hours on pewter plate

Joseph Niepce, 1826 Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes



The Geometry of Image Formation
Szeliski 2.1, parts of 2.2

Mapping between image and world coordinates
— Pinhole camera model

— Projective geometry
* Vanishing points and lines

— Projection matrix

Slides from James Hays, Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth



Dimensionality Reduction Machine (3D to 2D)

3D world

[

Point of observation

=)

2D image

O

=

Figures © Stephen E. Palmer, 2002



Lake S@rvagsvatn in Faroe Islands

100 metres above sea level



Lake S@rvagsvatn in Faroe Islands

100 30 metres above sea level
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Holbein’s The Ambassadors - 1533




Holbein’s The Ambassadors — Memento Mori




Cameras and World Geometry

el ,
. . \F
How tall is this woman? =N
' How high is the camera? |
o T
94 What is the camera  @¥
@ rotation wrt. world?

L

Which ball is closer?




Let’s design a camera

ldea 1: Put a sensor in front of an object
Do we get a reasonable image?

clbject sensor

Slide source: Seitz



Let’s design a camera

ldea 2: Add a barrier to block most rays
— Pinhole in barrier

— Only sense light from one direction.
* Reduces blurring.

— In most cameras, this aperture can vary in size.

clject barrier sensor

Slide source: Seitz



Pinhole camera model

_

image
plane

N pinhole virtual Real

1mage object

f = Focal length
c = Optical center of the camera

Figure from Forsyth



Projection: world coordinates—2>image coordinates

\

Image
center
(Uos Vo)

-
!

v
|

Camera

Center

%‘2/ (0, 0, 0) (N
U

p = distance from
image center

What is the effect if f and Z are equal?



Projective Geometry

Length (and so area) is lost.

Yeudl

Who is taller
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Which is closer?

*




Length and area are not preserved

Figure by David Forsyth



Projective Geometry

Angles are lost.

Perpendicular?




Projective Geometry

What is preserved?
* Straight lines are still straight.




Vanishing points and lines

Parallel lines in the world

intersect in the projected
image at a “vanishing point”.

Parallel lines on the same
plane in the world converge
to vanishing points on a
“vanishing line”.

E.G., the horizon.

Vanishing Point Vanishing Point

Vanishing Line




Vanishing points and lines

T Vertical vanishing
point
(at infinity)

Vanls_hlng Vanishing
point .
point

Slide from Efros, Photo from Criminisi



Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006



Pinhole camera model

_

image
plane

N pinhole virtual Real

1mage object

f = Focal length
c = Optical center of the camera

Forsyth



Projection: world coordinates—2>image coordinates

\

Image
center
(Uos Vo)

-
!

v
|

Camera

Center

%‘2/ (0, 0, 0) (N
U

p = distance from
image center

What is the effect if f and Z are equal?



Slide Credit: Savarese

Camera (projection) matrix

X: Image Coordinates: (u,v,1)
X = K[R t] X K: Intrinsic Matrix (3x3)
\

| R: Rotation (3x3)
\ t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Extrinsic Matrix



Projective geometry

e 2D point in cartesian = (x,y) coordinates
e 2D point in projective = (x,y,w) coordinates

Projector

ldea from www.tomdalling.com



Projective geometry

e 2D point in cartesian = (x,y) coordinates
e 2D point in projective = (x,y,w) coordinates

Projector

ldea from www.tomdalling.com



Varying w

Projector

Projected image becomes smaller.



Projective geometry

e 2D point in projective = (x,y,w) coordinates
— w defines the scale of the projected image.
— Each x,y point becomes a ray!

Projector



Projective geometry

* |In 3D, point (x,y,z) becomes (x,y,z,w)

* Perspective is w varying with z:

— Objects far away are appear smaller

1 ('e/
B’y




Homogeneous coordinates

Converting to homogeneous coordinates

€T
(z,y) = | vy
1

2D (image) coordinates

(z,y,2) =

N < 8

1

3D (scene) coordinates

Converting from homogeneous coordinates

y | = (z/w,y/w)

2D (image) coordinates

I

A
w

= (z/w, y/w, z/w)

3D (scene) coordinates



Homogeneous coordinates

Scale invariance in projection space

X kX I
kx X

. kw | | w
KLY =K =] [Ty
w| |kw| Gt bl
Homogeneous Cartesian
Coordinates Coordinates

E.G., we can uniformly scale the projective space, and it will still
produce the same image -> scale ambiguity



Slide Credit: Savarese

Camera (projection) matrix

X: Image Coordinates: (u,v,1)
X = K[R t] X K: Intrinsic Matrix (3x3)
\

| R: Rotation (3x3)
\ t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Extrinsic Matrix



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« Optical center at (0,0)  * Cameraat (0,0,0)
* No skew K
L e e - g __X_
u :f 0 0,0 y
x:K[I o]x =pwv|=f0 f 0,0
1] 0.0 1.0 .

Slide Credit: Savarese



Projection: world coordinates—2>image coordinates

\

Image
center
(Uos Vo)

-
!

Y
|

Camera

Center

%‘2/ (0, 0, 0) N
U

p = distance from
image center




Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« No skew » Camera at (0,0,0)

x=K[l 0]X =pwvi=lio f v o0

, N < X




Remove assumption: equal aspect ratio

Intrinsic Assumptions Extrinsic Assumptions
* No skew * No rotation
« Camera at (0,0,0)

x=K[l 0]X mpwvi=l0 f v 0

N < X




Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions
* No rotation
« Camera at (0,0,0)

x=K[l 0]|X = wv|=li0 f v; 0

Note: different books use different notation for parameters

R N < X




Oriented and Translated Camera




Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
* No rotation

u f. s u, (1 O
x:K[| t])( m) wvi=0 f v, 0 1
1] |0 0 1]0 O

_ O O

, N < X




3D Rotation of Points

Slide Credit: Saverese

Rotation around the coordinate axes, counter-clockwise:

" \
%

R, (@) =

R, (£) =

R,(7)=

1 0 0
0 cosa -SIina
_O Sina COS«& |

cosp 0 sing]
0 1 0
—sing 0 cosp

cosy —siny O]
siny cosy O

0 0 1



Allow camera rotation

Ir'12 r13
r22 r23
r32 r33

N < X




Demo — Kyle Simek

* “Dissecting the Camera Matrix”

 Three-part blog series

* http://ksimek.github.io/2012/08/14/decompose/
e http://ksimek.github.io/2012/08/22/extrinsic/

e http://ksimek.github.io/2013/08/13/intrinsic/

* “Perspective toy”
e http://ksimek.github.io/perspective camera toy.html



http://ksimek.github.io/2012/08/14/decompose/
http://ksimek.github.io/2012/08/22/extrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/perspective_camera_toy.html

Orthographic Projection

* Special case of perspective projection

— Also called “parallel projection”  wlv|=|0 1

o O O
—, O O

— What's the projection matrix? 1 0

Slide by Steve Seitz



Field of View (Zoom, focal length)

1000 mm 294"
500 mm 5
300 mm 8
135 mm 1%
V7mm
85 mm 28
50 mm 47
28 M 75
17 e 104 85mm
)

From London and Upton



Beyond Pinholes: Radial Distortion

No Distortion Barrel Distortion Pincushion Distortion

Corrected Barrel Distortion

Image from Martin Habbecke



Beyond Pinholes: Real apertures




Accidental Cameras

Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture.
Antonio Torralba, William T. Freeman




Accidental Cameras

;‘
|q,fo ./

a) Input (occluder present)
/ ‘

iy §“£ F g

o\ "“~ » > == Gl
) Difference image (b-a) d) Crop upside down e) True view



Things to remember

* Vertical vanishing
point
- (at infinity)

Vanishing (R EE i

I&e ,.
* Vanishing pointsand \ —saSEmE—c
anishing o i e Vanishing

van |S h i N g | | Nnes S < el point

* Pinhole camera model ..
and camera projection
matrix

* Homogeneous
coordinates




IS THIS ENOUGH?
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