


Review

• Model fitting

– Least squares / robust least squares

– RANSAC

– Iterative Closest Points

• Models

– 2D image transformations





Review: RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



Review: 2D image transformations

Szeliski 2.1



What if I want to fit multiple models?
What if my lines are in segments?

http://ostatic.com/files/images/ss_hough.jpg



Start with edge detection  Canny



Edge gradients
• Equation of line: 

• Recall: when we detect an 
edge pixel, we can estimate 
its gradient m.

• With the (x,y) position of the
pixel, we can estimate b. 

• Thus, each edge pixel (edgel!) represents a line.

• Hough transform: 
What if each edge pixel voted for the line it might represent?

y = m x + b

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures,

Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959. 



Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

y

x

Edge image Parameter space (Hough space)

-b

-m
+b

+m



Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

• Each edge pixel votes for a set of parameters, which 
increments those values in grid.
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Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

• Each edge pixel votes for a set of parameters, which 
increments those values in grid.
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Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

• Each edge pixel votes for a set of parameters, which 
increments those values in grid.
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Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

• Each edge pixel votes for a set of parameters, which 
increments those values in grid.
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Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

• Each edge pixel votes for a set of parameters, which 
increments those values in grid.
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Hough Transform: Outline

• Create a grid of candidate m,b parameter values.
• Why a grid?

• m,b are continuous; grid discretizes into hypotheses.

• Each edge pixel votes for a set of parameters, which 
increments those values in grid.

• Find maxima – our line candidates.
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Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?

• Think-Pair-Share as orientation varies – ramifications!
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Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?

+b

+my

x

Image space Parameter space (Hough space)

-b

-m



Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?
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Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?
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Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?
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Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?
• Unoriented point is line is Hough space.
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Hough Transform: Step back

• Hough space represents all possible lines.

• With gradient information constriction:
• Edgel is single point in Hough space.

• Without gradient orientation information?
• How big is Hough space?
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Problem.

m = inf

b = -inf

How to fix?



Hough Transform: Line Normal Form

• Use

• Space is 0 to 360

• Use r = distance to line from some origin
•

• Space is ± max_𝑥2 +max _𝑦2
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Hough Transform: Line Normal Form

• In this line form, unoriented edge 
draws a sinusoid in Hough space. 
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Image r,ϴ model parameter histogram

Hough transform - experiments

Slide from S. Savarese

r

 

Next few images ignore edge orientation.

Each point is one sinusoid.

y

x



Image

Need to adjust grid size or smooth

Hough transform - experiments

Noisy data

Slide from S. Savarese

r,ϴ model parameter histogram

y

x



Issue: spurious peaks due to uniform noise

Image

Hough transform - experiments

Slide from S. Savarese

ρ,ϴ model parameter histogram

y

x



Hough transform example

http://ostatic.com/files/images/ss_hough.jpg



1. Image  Canny



2. Canny  Hough votes



3. Hough votes  Edges 

Find peaks and post-process.



Finding lines using Hough transform

• Using known edge orientation to vote for a 
single line (rather than accumulate over all θ).

• Practical considerations

– Bin size

– Smoothing

– Finding multiple lines

– Finding line segments

• Can ‘fit’ line to edgels that ‘survive the vote’ 
for more precise estimation.



Hough transform conclusions
Good
• Robust to outliers: each point votes separately.
• Edge orientation -> fairly efficient (faster than trying all parameter sets).
• Provides multiple model fitting.

Bad
• Some sensitivity to noise
• Bin size trades off between noise tolerance, precision, and 

speed/memory
– Can be hard to find sweet spot.

• Not suitable for more than a few parameters
– Grid size grows exponentially.

Common applications
• Line fitting (also circles, ellipses, etc.)
• Object instance recognition (parameters are affine transform)
• Object category recognition  (parameters are position/scale)

James Hays



FEATURE DETECTION 
AND MATCHING – DONE.

Computer Vision c. 2007



Overview of Keypoint Matching

K. Grauman, B. Leibe
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Object Instance Recognition

1. Match keypoints to 
object model

2. Solve for affine 
transformation 
parameters

3. Score by inliers and 
choose solutions with 
score above threshold

A1

A2

A3

Affine 
Parameters

Choose hypothesis with max 

score above threshold

# Inliers

Matched 

keypoints

James Hays



Finding objects (SIFT, Lowe 2004)
1. Match interest points from input image to database image.

2. Get location/scale/orientation using Hough voting.

– In database image, each point has known 
position/scale/orientation wrt. whole object.

– Matched points vote for the position, scale, and orientation 
of the entire object.

– Bins for x, y, scale, orientation
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)

• Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification for each bin with at least 3 keypoints

– Iterate least squares fit and checking for inliers and outliers

– (Advanced) Compute affine registration to check model fit.

4. Report object if > T inliers (T is typically 3, can be computed to 
match some probabilistic threshold)

James Hays



Examples of recognized objects



CAMERAS, MULTIPLE VIEWS, 
AND MOTION



What is a camera?





Camera obscura: dark room

• Known during classical period in China and Greece 
(e.g.,  Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

James Hays



Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

drawingchamber.wordpress.com

Camera lucida



Tim’s Vermeer

Vermeer, The Music Lesson, 1665 Tim Jenison (Lightwave 3D, Video Toaster)



Tim’s Vermeer – video still



First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes



The Geometry of Image Formation

Mapping between image and world coordinates

– Pinhole camera model

– Projective geometry

• Vanishing points and lines

– Projection matrix

Szeliski 2.1, parts of 2.2

Slides from James Hays, Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth



Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image



Lake Sørvágsvatn in Faroe Islands 

100 metres above sea level



Lake Sørvágsvatn in Faroe Islands 

100 30 metres above sea level

amusingplanet.com, thanks to Aaron Gokaslan







Holbein’s The Ambassadors - 1533



Holbein’s The Ambassadors – Memento Mori



Cameras and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera 

rotation wrt. world?

James Hays



Let’s design a camera

Idea 1:  Put a sensor in front of an object

Do we get a reasonable image?

Slide source: Seitz

sensor



Let’s design a camera

Idea 2: Add a barrier to block most rays
– Pinhole in barrier

– Only sense light from one direction.
• Reduces blurring.

– In most cameras, this aperture can vary in size.

Slide source: Seitz

sensor



Pinhole camera model

Figure from Forsyth
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Projection: world coordinatesimage coordinates
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Projective Geometry

Length (and so area) is lost.

Which is closer?

Who is taller?



Length and area are not preserved

Figure by David Forsyth

B’

C’

A’



Projective Geometry

Perpendicular?

Parallel?

Angles are lost.



Projective Geometry

What is preserved?

• Straight lines are still straight.



Vanishing points and lines

Parallel lines in the world 

intersect in the projected  
image at a “vanishing point”.

Parallel lines on the same 
plane in the world converge 
to vanishing points on a 
“vanishing line”.

E.G., the horizon.

Vanishing Point Vanishing Point

Vanishing Line



Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi





Pinhole camera model

Forsyth
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Projection: world coordinatesimage coordinates
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Center 

(0, 0, 0)
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Slide Credit: Savarese

Camera (projection) matrix

 XtRKx 
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,t

X

x

Extrinsic Matrix



Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Idea from www.tomdalling.com

Y

X

Projector



Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Y

X

Projector W

Idea from www.tomdalling.com



Varying w

w1 w2 < w1

Projected image becomes smaller.

Y

X

Projector

Y

X

Projector



Projective geometry

• 2D point in projective = (x,y,w) coordinates

– w defines the scale of the projected image.

– Each x,y point becomes a ray!

Y

X

Projector W



Projective geometry

• In 3D, point (x,y,z) becomes (x,y,z,w)

• Perspective is w varying with z:

– Objects far away are appear smaller

B’

C’



Homogeneous coordinates

Converting to homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates

Converting from homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates



Homogeneous coordinates

Scale invariance in projection space
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E.G., we can uniformly scale the projective space, and it will still 

produce the same image -> scale ambiguity



Slide Credit: Savarese

Camera (projection) matrix

 XtRKx 
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
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Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x
(0,0,0)



Projection: world coordinatesimage coordinates
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(0, 0, 0)
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Remove assumption: known optical center

 X0IKx 
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Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays

K



Remove assumption: equal aspect ratio

 X0IKx 
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Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays



Remove assumption: non-skewed pixels

 X0IKx 
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Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters James Hays



Oriented and Translated Camera

Ow

iw

kw

jw

t

R

X

x

James Hays



Allow camera translation

 XtIKx 
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James Hays



3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:
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Allow camera rotation

 XtRKx 
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Demo – Kyle Simek

• “Dissecting the Camera Matrix”

• Three-part blog series

• http://ksimek.github.io/2012/08/14/decompose/

• http://ksimek.github.io/2012/08/22/extrinsic/

• http://ksimek.github.io/2013/08/13/intrinsic/

• “Perspective toy”

• http://ksimek.github.io/perspective_camera_toy.html

http://ksimek.github.io/2012/08/14/decompose/
http://ksimek.github.io/2012/08/22/extrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/perspective_camera_toy.html


Orthographic Projection

• Special case of perspective projection

– Distance from the COP to the image plane is infinite

– Also called “parallel projection”

– What’s the projection matrix?

Image World

Slide by Steve Seitz
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Field of View (Zoom, focal length)



Beyond Pinholes: Radial Distortion

Image from Martin Habbecke

Corrected Barrel Distortion



Beyond Pinholes: Real apertures



Accidental Cameras

Accidental Pinhole and Pinspeck Cameras 
Revealing the scene outside the picture. 

Antonio Torralba, William T. Freeman



Accidental Cameras

James Hays



Things to remember

• Vanishing points and 
vanishing lines

• Pinhole camera model 
and camera projection 
matrix

• Homogeneous 
coordinates

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

 XtRKx 

James Hays



IS THIS ENOUGH?



Erik Johansson – The Architect


