

Future Vision

2017 MWF 1PM 368 Computer Vision

Undergrad HTAs / TAs

- Help me make the course better!
- HTA - deadline today (! sorry)
- TA - deadline March 21st opens March 15th

Project 2

- Well done.
- Open ended parts, lots of opportunity for mistakes.
- Real implementation experience of a tricky vision system.

Episcopal Gaudi - the haunted palace

Harder to mark

- Part 2 is somewhat open ended.
- Many of you came up with different solutions.
- -> We may have a few issues in the marking.
- Let us know if you think we've made an error.

MATLAB tip - thresholding

- No need to iterate.
- img = im2double(imread('a.jpg'));
- imgT = img . * double(img > 0.5);

Average Accuracy

Across Notre Dame, Mt. Rushmore, and Gaudi's Episcopal Palace

1. 76\% - Katya Schwiegershausen
2. 72\% -Prasetya Utama
3. 70.6\% - Jessica Fu
4. 68.67% - Tiffany Chen
5. Gaudi's choice award: 34\% - Spencer Boyum (1st in Episcopal Palace)

Outline

- Recap camera calibration
- Epipolar Geometry

Oriented and Translated Camera

Degrees of freedom

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \mathbf{X}$

$$
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

How to calibrate the camera?

$$
\left.\begin{array}{l}
\mathbf{x}=\mathbf{K}[\mathbf{R} \\
\mathbf{t}
\end{array}\right] \mathbf{X},\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] .
$$

How do we calibrate a camera?

Method 1 - homogeneous linear system

$$
\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Solve for m's entries using linear least squares

For project 3, we want the camera center

Estimate of camera center

Oriented and Translated Camera

Recovering the camera center

Estimate of camera center

Epipolar Geometry and Stereo Vision

Depth from disparity

image $I(x, y)$
Disparity map $D(x, y)$

$$
\left(x^{\prime}, y^{\prime}\right)=(x+D(x, y), y)
$$

If we could find the corresponding points in two images, we could estimate relative depth...

What do we need to know?

1. Calibration for the two cameras.
2. Camera projection matrix
3. Correspondence for every pixel.

Like project 2, but project 2 is "sparse".
We need "dense" correspondence!
2. Correspondence for every pixel. Where do we need to search?

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x
- Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if not already known)?
2. Correspondence: How do we search for the matching point x '?

- Epipolar geometry
- Relates cameras from two positions

Wouldn't it be nice to know where matches can live?
To constrain our 2 d search to 1 d ?

Key idea: Epipolar constraint

Potential matches for x ' have to lie on the corresponding line l.

Potential matches for x have to lie on the corresponding line l '.

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar lines

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Think Pair Share

Where are the epipoles?
What do the epipolar lines look like?

x

b)

c)
X 。 .

d)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e:
"Focus of expansion"

What is this useful for?

- Find X : If I know X, and have calibrated cameras (known intrinsics K, K' and extrinsic relationship), I can restrict x^{\prime} to be along I^{\prime}.
- Discover disparity for stereo.

What is this useful for?

- Given candidate x, x^{\prime} correspondences, estimate relative position and orientation between the cameras and the 3D position of corresponding image points.

What is this useful for?

- Model fitting: see if candidate x, x^{\prime} correspondences fit estimated projection models of cameras 1 and 2.

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar lines

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix

Epipolar constraint: Calibrated case

$$
\hat{x}^{\prime}=K^{\prime-1} x^{\prime}=X^{\prime}
$$

2D pixel coordinate (homogeneous)

3D scene point in $2^{\text {nd }}$ camera's 3D coordinates

Epipolar constraint: Calibrated case

$$
\begin{array}{ll}
\qquad \mathcal{X}=K^{-1} x=X \\
\text { 3D scene point } \\
\text { vards } \mathrm{X} \text {) } & \begin{array}{l}
\text { 2D pixel coordinate } \\
\text { (homogeneous) }
\end{array}
\end{array}
$$

$$
\hat{x}^{\prime}=K^{\prime-1} x^{\prime}=X^{\prime}
$$

Homogeneous 2d point (3D ray towards X)

3D scene point in $2^{\text {nd }}$ camera's 3D coordinates

$$
\hat{x} \cdot\left[t \times\left(R \hat{x}^{\prime}\right)\right]=0
$$

(because $\hat{x}, R \hat{x}^{\prime}$, and t are co-planar)

Essential matrix

 corresponding pairs of normalized homogeneous image points across pairs of images - for K calibrated cameras.

Essential Matrix

(Longuet-Higgins, 1981)

Epipolar constraint: Uncalibrated case

- If we don't know K and K^{\prime}, then we can write the epipolar constraint in terms of unknown normalized coordinates:

$$
\hat{x}^{T} E \hat{x}^{\prime}=0 \quad x=K \hat{x}, \quad x^{\prime}=K^{\prime} \hat{x}^{\prime}
$$

The Fundamental Matrix

Without knowing K and K ', we can define a similar relation using unknown normalized coordinates

$$
\begin{aligned}
& \hat{x}^{T} E \hat{x}^{\prime}=0 \\
& \hat{x}=K^{-1} x \\
& \hat{x}^{\prime}=K^{\prime-1} x^{\prime}
\end{aligned}
$$

$$
\Longrightarrow x^{T} F x^{\prime}=0 \quad \text { with } \quad F=K^{-T} E K^{\prime-1}
$$

Fundamental Matrix
(Faugeras and Luong, 1992)

Properties of the Fundamental matrix

- $F x^{\prime}=0$ is the epipolar line / associated with x^{\prime}
- $F^{\top} x=0$ is the epipolar line l^{\prime} associated with x
- F is singular (rank two): $\operatorname{det}(F)=0$
- $F e^{\prime}=0$ and $F^{\top} e=0$ (nullspaces of $F=e^{\prime}$; nullspace of $\mathrm{F}^{\top}=e^{\prime}$)
- Fhas seven degrees of freedom: 9 entries but defined up to scale, $\operatorname{det}(\mathrm{F})=0$

F in more detail

- F is a 3×3 matrix
- Rank 2 -> projection; one column is a linear combination of the other two.
- Determined up to scale.
- 7 degrees of freedom
$\left[\begin{array}{lll}a & b & \alpha a+\beta b \\ c & d & \alpha c+\beta d \\ e & f & \alpha e+\beta f\end{array}\right]$ where a is scalar; e.g., can normalize out.
Given x projected from X into image $1, F$ constrains the projection of x^{\prime} into image 2 to an epipolar line.

Estimating the Fundamental Matrix

- 8-point algorithm
- Least squares solution using SVD on equations from 8 pairs of correspondences
- Enforce $\operatorname{det}(F)=0$ constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.

8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations

$$
\begin{gathered}
\mathbf{x}^{T} F \mathbf{x}^{\prime}=0 \\
u u^{\prime} f_{11}+u v^{\prime} f_{12}+u f_{13}+v u^{\prime} f_{21}+v v^{\prime} f_{22}+v f_{23}+u^{\prime} f_{31}+v^{\prime} f_{32}+f_{33}=0 \\
\mathrm{~A} \boldsymbol{f}=\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & u_{1} v_{1}{ }^{\prime} & u_{1} & v_{1} u_{1}{ }^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} & 1 \\
\vdots & \vdots \\
u_{n} u_{v}^{\prime} & u_{n} v_{n}{ }^{\prime} & u_{n} & v_{n} u_{n} & v_{n} v_{n}^{\prime} & v_{n} & u_{n}^{\prime} & v_{n}^{\prime} & 1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
\vdots \\
f_{33}
\end{array}\right]=\mathbf{0}
\end{gathered}
$$

8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve from $\mathrm{Af}=\mathbf{0}$ using SVD

Matlab:
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})$;
$\mathrm{f}=\mathrm{V}(:$, end);
$\mathrm{F}=$ reshape $\left(\mathrm{f},\left[\begin{array}{ll}3 & 3\end{array}\right)^{\prime}\right.$;

Need to enforce singularity constraint

Fundamental matrix has rank $2: \operatorname{det}(F)=0$.

Left : Uncorrected F - epipolar lines are not coincident.
Right : Epipolar lines from corrected F.

8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve from $\mathrm{Af}=\mathbf{0}$ using SVD

Matlab:
$[U, S, V]=\operatorname{svd}(A)$;
$\mathrm{f}=\mathrm{V}(:$, end);
$\mathrm{F}=$ reshape (f, [3 3] $)^{\prime}$;
2. Resolve $\operatorname{det}(\mathrm{F})=0$ constraint using SVD

Matlab:
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{F})$;
$S(3,3)=0$;
$F=U * S * V^{\prime} ;$

8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve \mathbf{f} from $\mathrm{Af}=\mathbf{0}$ using SVD
2. Resolve $\operatorname{det}(F)=0$ constraint by SVD

Notes:

- Use RANSAC to deal with outliers (sample 8 points)
- How to test for outliers?

Problem with eight-point algorithm

$$
\left[\begin{array}{llllllll}
u^{\prime} u & u^{\prime} v & u^{\prime} & v^{\prime} u & v^{\prime} v & v^{\prime} & u & v
\end{array}\right]\left[\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32}
\end{array}\right]=-1
$$

Problem with eight-point algorithm

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute \boldsymbol{F} from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if \boldsymbol{T} and \boldsymbol{T}^{\prime} are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $\boldsymbol{T}^{\top} \boldsymbol{F} \boldsymbol{T}$

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar lines

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Let's recap...

- Fundamental matrix song
- http://danielwedge.com/fmatrix/

