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Multi-view geometry problems
• Structure: Given projections of the same 3D point in two or 

more images, compute the 3D coordinates of that point
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Multi-view geometry problems
• Motion: Given a set of corresponding points in two or more 

images, compute the camera parameters
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Multi-view geometry problems
• Stereo correspondence: Given a point in one of the images, 

where could its corresponding points be in the other images?
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Multi-view geometry problems
• Optical flow: Given two images, find the location of a world point 

in a second close-by image with no camera info.
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Fundamental matrix

Let x be a point in left image, x’ in right image

Epipolar relation

• x maps to epipolar line l’

• x’ maps to epipolar line l

Epipolar mapping described by a 3x3 matrix F:

It follows that:

l’l

x x’

𝑙′ = 𝐹𝑥
𝑙 = 𝐹𝑇𝑥′

𝑥′𝐹𝑥 = 0



Fundamental matrix

This matrix F is called

• the “Essential Matrix”

– when image intrinsic parameters are known

• the “Fundamental Matrix”

– more generally (uncalibrated case)

Can solve for F from point correspondences

• Each (x, x’) pair gives one linear equation in entries of F

• F has 9 entries, but really only 7 degrees of freedom.

• With 8 points it is simple to solve for F, but it is also possible 

with 7. See Marc Pollefey’s notes for a nice tutorial

𝑥′𝐹𝑥 = 0

http://cs.unc.edu/~marc/tutorial/node53.html


Stereo image rectification



Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

 C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example



SIFT + Fundamental Matrix + RANSAC + Sparse correspondence



SIFT + Fundamental Matrix + RANSAC + dense correspondence

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski

Communications of the ACM, Vol. 54 No. 10, Pages 105-112 2009



Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski

Communications of the ACM, Vol. 54 No. 10, Pages 105-112

SIFT + Fundamental Matrix + RANSAC + dense correspondence



SIFT + Fundamental Matrix + RANSAC + dense correspondence
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Correspondence problem

Multiple match 

hypotheses 

satisfy epipolar 

constraint, but 

which is correct? 

Figure from Gee & Cipolla 1999
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Dense correspondence search

For each epipolar line:

For each pixel / window in the left image:

• Compare with every pixel / window on same 

epipolar line in right image
• Pick position with minimum match cost (e.g., SSD, 

normalized correlation)

Adapted from Li Zhang
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Correspondence problem

Source: Andrew Zisserman

Intensity 

profiles
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Correspondence problem

Neighborhoods of corresponding points are  

similar in intensity patterns.

Source: Andrew Zisserman
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Correlation-based window matching

???

Textureless regions are 
non-distinct; high 
ambiguity for matches.



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 

variation, yet small enough to contain only pixels with 

about the same disparity.

Effect of window size
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Stereo – Tsukuba test scene (now old)
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Results with window search

Window-based matching

(best window size)

‘Ground truth’
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Better solutions

• Beyond individual correspondences to estimate 

disparities:

• Optimize correspondence assignments jointly

• Scanline at a time (DP)

• Full 2D grid (graph cuts)
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Scanline stereo

• Try to coherently match pixels on the entire scanline

• Different scanlines are still optimized independently

Left image Right image
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“Shortest paths” for scan-line stereo
Left image

Right image

Can be implemented with dynamic programming

Ohta & Kanade ’85, Cox et al. ’96, Intille & Bobick, ‘01
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Coherent stereo on 2D grid
• Scanline stereo generates streaking artifacts

• Can’t use dynamic programming to find spatially 

coherent disparities/ correspondences on a 2D grid
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Stereo as energy minimization

• What defines a good stereo correspondence?

1. Match quality

• Want each pixel to find a good match in the other image

2. Smoothness

• If two pixels are adjacent, they should (usually) move about 

the same amount 
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Stereo matching as energy minimization

I1
I2 D

Energy functions of this form can be minimized using graph cuts.

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 
Minimization via Graph Cuts,  PAMI 2001
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Source: Steve Seitz

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
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Better results… 

Graph cut method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/
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Challenges

• Low-contrast ‘textureless’ image regions

• Occlusions

• Violations of brightness constancy 

• Specular reflections

• Really large baselines 

• Foreshortening and appearance change

• Camera calibration errors



Active stereo with structured light

• Project “structured” light patterns onto the object

• Simplifies the correspondence problem

• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 

Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/


Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


Summary

• Epipolar geometry
– Epipoles are intersection of baseline with image planes
– Matching point in second image is on a line passing 

through its epipole
– Fundamental matrix maps from a point in one image to a 

line (its epipolar line) in the other
– Can solve for F given corresponding points (e.g., interest 

points)

• Stereo depth estimation
– Estimate disparity by finding corresponding points along 

scanlines
– Depth is inverse to disparity


