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PCA: Principal Component Analysis
• The best possible lower dimensional 

representation based on linear projections.

• An basis of directions of variance ordered by 
their significance.

• Throw away least variance dimensions to 
reduce data representation.

R.P.W. Duin

http://rduin.nl/prtools.html




How do we cluster?

• K-means
– Iteratively re-assign points to the nearest cluster center.

• Agglomerative clustering
– Start with each point as its own cluster and iteratively 

merge the closest clusters.

• Mean-shift clustering
– Estimate modes of probability density function.

• Spectral clustering
– Split the nodes in a graph based on assigned links with 

similarity weights.



Spectral clustering

Group points based on graph structure & edge costs.

Captures “neighborhood-ness” or local smoothness.
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Image: 
Hassan et al.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2gsrmv8zSAhXM1IMKHYmqDIgQjRwIBw&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2F307879813_fig5_Figur-5-Graph-plot-illustrating-normalized-cut-segmentation&bvm=bv.149093890,d.amc&psig=AFQjCNHRJcSBvLAdRvGZ6fsDZA-som683A&ust=1489254583919385




The machine learning framework

• Apply a prediction function to a feature representation of 

the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



The machine learning framework

f(x) = y

Training: Given a training set of labeled examples:

{(x1,y1), …, (xN,yN)}

Estimate the prediction function f by minimizing the 

prediction error on the training set.

Testing: Apply f to a unseen test example x and output the 

predicted value y = f(x) to classify x.

Output (label)Prediction 

function

Image 

feature

Slide credit: L. Lazebnik



Learning a classifier

Given a set of features with corresponding labels, 
learn a function to predict the labels from the 
features.
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Each data point has a 
feature vector (x1,x2).



ImageNet

• Images for each 
category of 
WordNet

• 1000 classes

• 1.2mil images

• 100k test

• Top 5 error



Dataset split

Training 

Images

Testing 

Images

Validation 

Images

- Secret labels
- Measure error

- Train classifier - Measure error
- Tune model 
hyperparameters

Random train/validate splits = cross validation
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Slide credit: D. Hoiem and L. Lazebnik



Features

• Raw pixels

• Histograms

• GIST descriptors

• …
Slide credit: L. Lazebnik



One way to think about it…

• Training labels dictate that two examples are 
the same or different, in some sense.

• Features and distance measures define visual 
similarity.

• Classifiers try to learn weights or parameters 
for features and distance measures so that 
visual similarity predicts label similarity.



Many classifiers to choose from…

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• Restricted Boltzmann Machines

• Deep Convolutional Network

• …

Which is 

the best?



Claim:

The decision to use machine learning 
is more important than the choice of a 
particular learning method.

*Deep learning seems to be an exception to this, 
currently, because it learns the feature representation.



*Again, deep learning may be an exception here for the 
same reason, but deep learning _needs_ a lot of 
labeled data in the first place.

“The Unreasonable Effectiveness of Data” - Norvig

Claim:

It is more important to have more or 
better labeled data than to use a 
different supervised learning 
technique.



Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test 

example
Training 

examples 

from class 1

Training 

examples 

from class 2

Slide credit: L. Lazebnik



Classifiers: Linear

• Find a linear function to separate the classes:

f(x) = sign(w  x + b)

Slide credit: L. Lazebnik



• Images in the training set must be annotated with the 

“correct answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision

Slide credit: L. Lazebnik



Unsupervised “Weakly” supervised Fully supervised

Fuzzy; definition depends on task

Lazebnik

Spectrum of supervision

Less More

E.G., MS CocoE.G., ImageNet



Good training 

data?



Good training 

data?

http://mscoco.org/explore/?id=134918



Google guesses from the 1st caption



Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



Generalization Error
• Bias: how much the average model over all training sets 

differs from the true model.

– Error due to inaccurate assumptions/simplifications made by the 

model. 

• Variance: how much models estimated from different 

training sets differ from each other.

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error
Slide credit: L. Lazebnik



Generalization Error Effects
• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

Slide credit: L. Lazebnik



Generalization Error Effects
• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error

Slide credit: L. Lazebnik



Bias-Variance Trade-off

Models with too few parameters are 
inaccurate because of a large bias.

• Not enough flexibility!

Models with too many parameters are 
inaccurate because of a large variance. 

• Too much sensitivity to the sample.

Slide credit: D. Hoiem



Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem



Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance
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Slide credit: D. Hoiem



Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples
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Fixed prediction model

Slide credit: D. Hoiem



Remember…

• No classifier is inherently 
better than any other: you 
need to make assumptions to 
generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to 
perfectly estimate parameters 
from limited data

Slide credit: D. Hoiem



How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem



Very brief tour of some classifiers

• K-nearest neighbor

• SVM

• Boosted Decision Trees

• Neural networks (+CNNs)

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Restricted Boltzmann Machines

• ...



Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and 
the labels

• Often, makes use of 
conditional independence 
and priors

• Examples
– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to 
future prediction problems

Discriminative Models

• Learn to directly predict the 
labels from the data

• Often, assume a simple 
boundary (e.g., linear)

• Examples
– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a 
label from the data than to 
model the data

Slide credit: D. Hoiem



evolvingai.org

“Learn the data boundary” “Represent the data + boundary”

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiBtuP4wszSAhVr3IMKHbIkBw4QjRwIBw&url=https%3A%2F%2Fduphan.wordpress.com%2Ftag%2Fgenerative-model%2F&psig=AFQjCNFVu4g8QBMtI0MjXQHNXMQK-7Lfgg&ust=1489255421586991
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Nearest Neighbor Classifier

Assign label of nearest training data point to each test data point.

Divides input space into decision regions separated by decision 
boundaries – Voronoi.

Voronoi partitioning 
of feature space 
for two-category 
2D and 3D data

from Duda et al.

Source: D. Lowe



K-nearest neighbor
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1-nearest neighbor
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3-nearest neighbor
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Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has 
error that is at most twice Bayes optimal error



Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sign(w  x + b)



Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)



Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)



What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-

class SVM formulation

• In practice, we have to obtain a multi-class 

SVM by combining multiple two-class SVMs 

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to 

the test example

Slide credit: L. Lazebnik



SVMs: Pros and cons

• Pros
• Many publicly available SVM packages:

http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible

• SVMs work very well in practice, even with very small 

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory 

– During training time, must compute matrix of kernel values for 

every pair of examples

– Learning can take a very long time for large-scale problems

http://www.kernel-machines.org/software


What to remember about classifiers

• No free lunch: machine learning algorithms are tools, 
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers 
than simple features and smart classifiers

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff)

Slide credit: D. Hoiem



Making decisions about data

• 3 important design decisions:
1) What data do I use?

2) How do I represent my data (what feature)?

3) What classifier / regressor / machine learning tool 
do I use?

• These are in decreasing order of importance

• Deep learning addresses 2 and 3 
simultaneously (and blurs the boundary 
between them). 

• You can take the representation from deep 
learning and use it with any classifier.



Project 4

Chatfield et al.

http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/


Project 4

Lazebnik et al. 2006

http://www.di.ens.fr/willow/pdfs/cvpr06b.pdf

