

COMPUTER VISION

Recap – Image Classification with Bags of Local Features

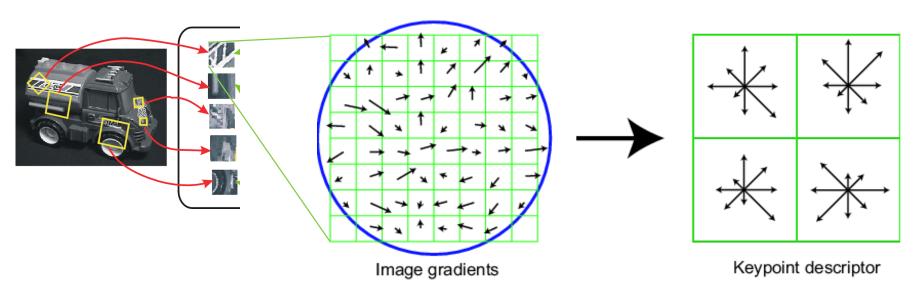
- Bag of Feature models were the state of the art for image classification for a decade.
- Numerous strategies to retain spatial information (spatial pyramid) and lost feature detail due to quantization.

- Doesn't the spatial pyramid seem kind of recursive / hierarchical?
- Like a SIFT feature on top of SIFT features?

SIFT vector formation

4x4 array of gradient orientation histogram weighted by magnitude. 8 orientations x 4x4 array = 128 dimensions.

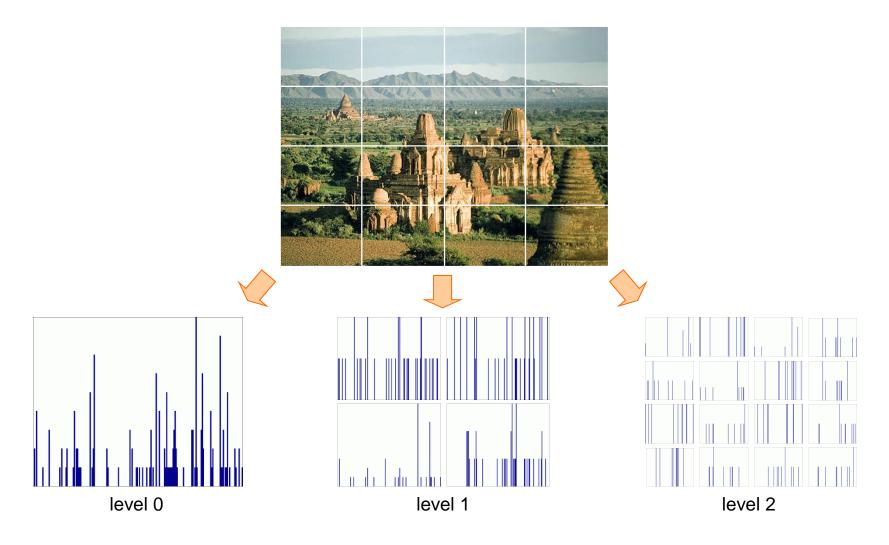
Motivation: some sensitivity to spatial layout, but not too much.



Showing only 2x2 here, but is 4x4

Spatial pyramid representation

- Extension of a bag of features
- Locally order-less representation at several levels of resolution



Recap – Image Classification with Bags of Local Features

- Doesn't the spatial pyramid seem kind of recursive / hierarchical?
- Like a SIFT feature on top of SIFT features?

 Seems like there is a tendency for features to involve convolution, spatial pooling, and non-linearities.

Object Detection

- Overview
- Viola-Jones (faces)
- Dalal-Triggs (humans)

- Later classes:
 - Deformable models
 - Deep learning

Person detection with HoG's & linear SVM's

- Histograms of Oriented Gradients for Human Detection, <u>Navneet Dalal</u>, <u>Bill Triggs</u>, International Conference on Computer Vision & Pattern Recognition - June 2005
- http://lear.inrialpes.fr/pubs/2005/DT05/

Object detection vs. Scene Recognition

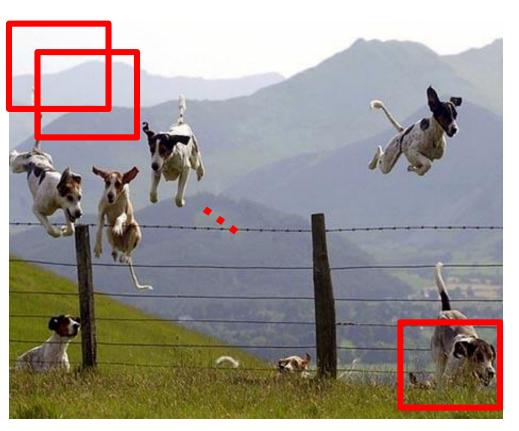
Scenes can be defined by distribution of "stuff" –
 materials and surfaces with arbitrary shape.

Objects are "things" that own their boundaries

 Bag of words models are less popular for object detection because they throw away shape info.

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch



Object or Non-Object?

Challenges in modeling the object class

Illumination

Object pose

'Clutter'

Occlusions

Intra-class appearance

Viewpoint

Challenges in modeling the non-object class

True Detections

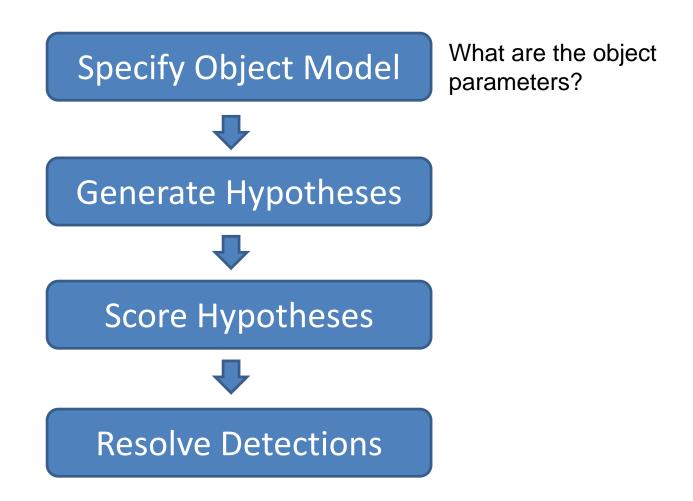
Bad Localization

Confused with Similar Object

Misc. Background

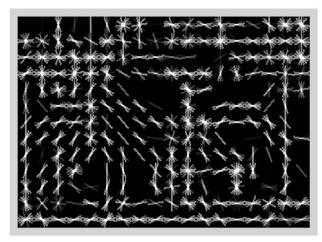
Confused with Dissimilar Objects

General Process of Object Recognition



- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

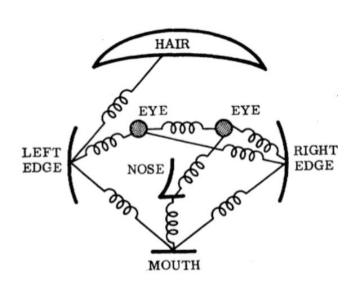
Image

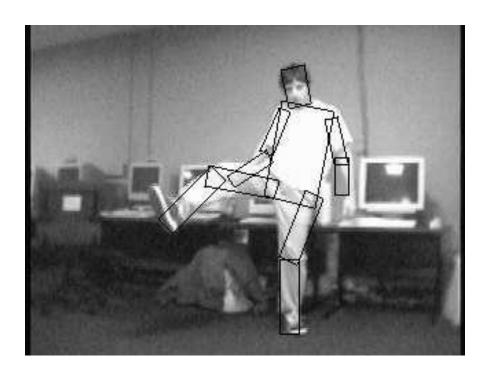


Template Visualization

2. Articulated parts model

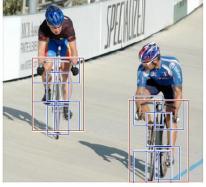
- Object is configuration of parts
- Each part is detectable

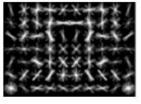


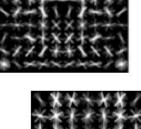


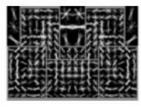
3. Hybrid template/parts model

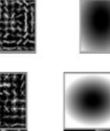
Detections

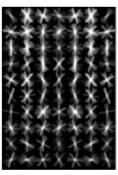




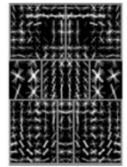




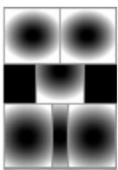




root filters coarse resolution

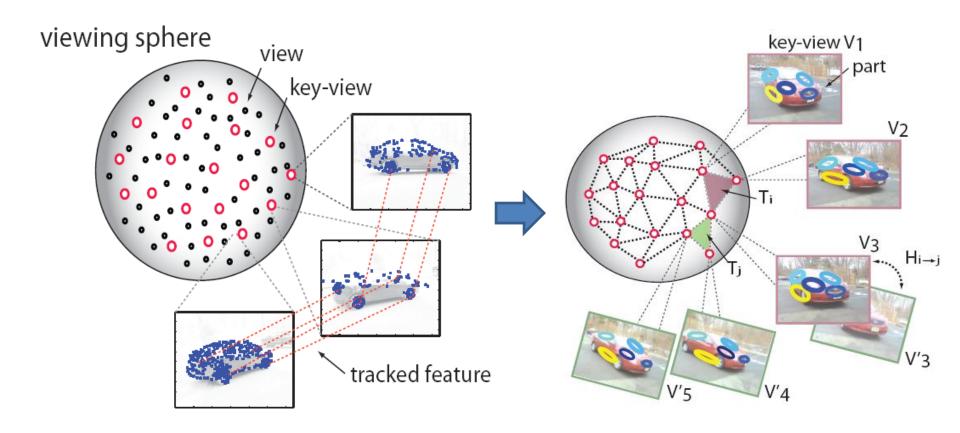


part filters finer resolution



deformation models

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation

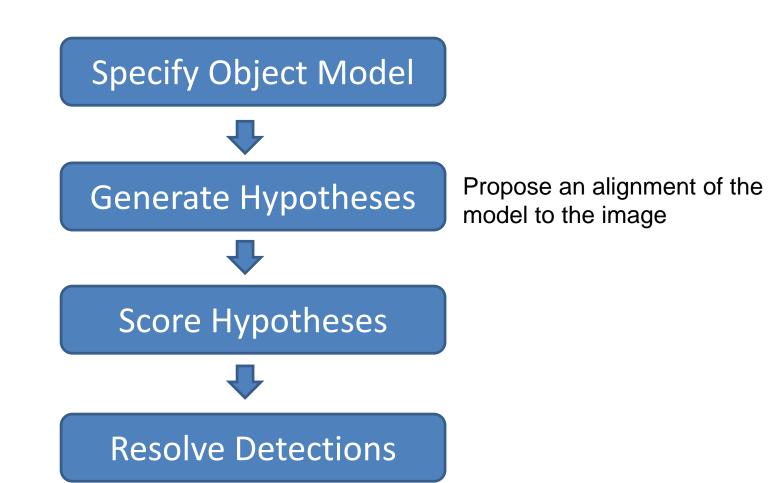


- 5. Deformable 3D model
- Object is a parameterized space of shape/pose/deformation of class of 3D object

Why not just pick the most complex model?

- Inference is harder
 - More parameters
 - Harder to 'fit' (infer / optimize fit)
 - Longer computation

General Process of Object Recognition



Generating hypotheses

1. Sliding window

Test patch at each location and scale

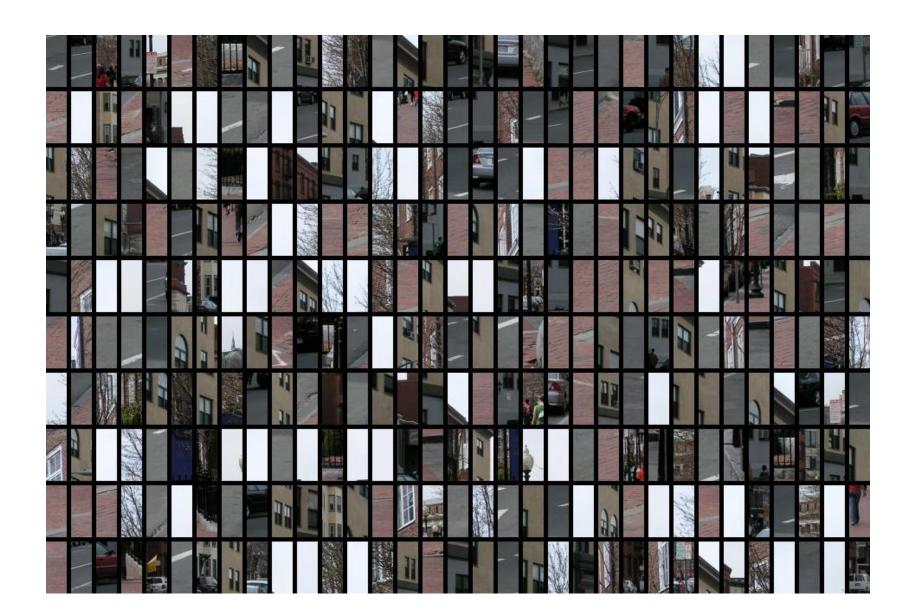
Generating hypotheses

1. Sliding window

Test patch at each location and scale

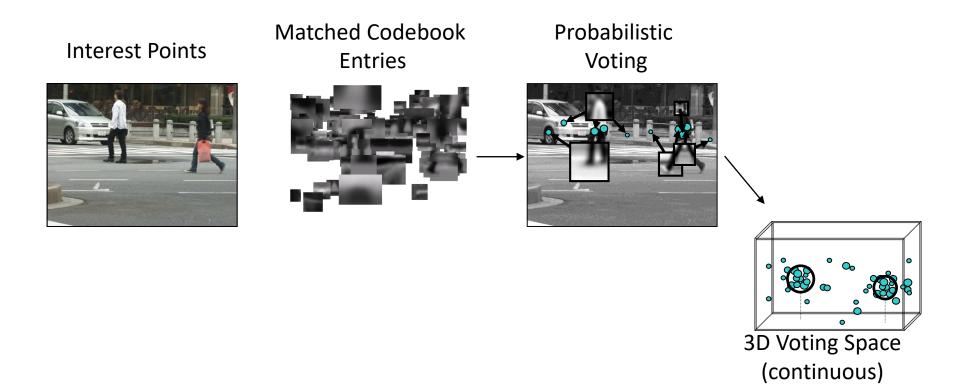
Note – Template did not change size

Each window is separately classified



Generating hypotheses

2. Voting from patches/keypoints

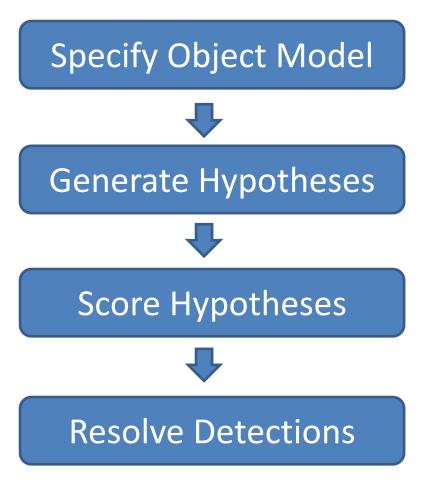


Generating hypotheses

3. Region-based proposal

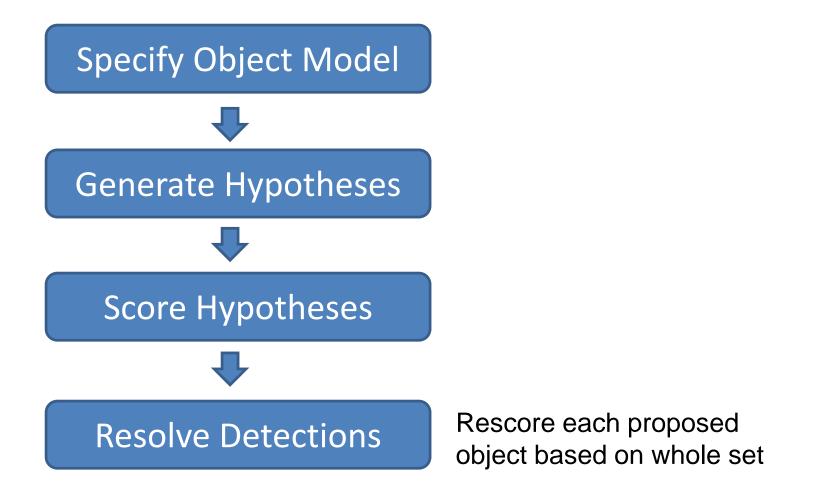
Endres Hoiem 2010

General Process of Object Recognition



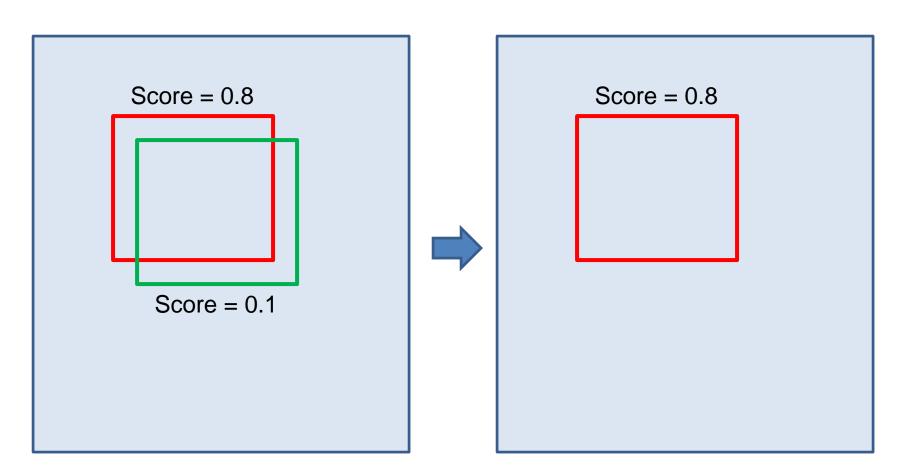
Mainly-gradient based features, usually based on summary representation, many classifiers

General Process of Object Recognition



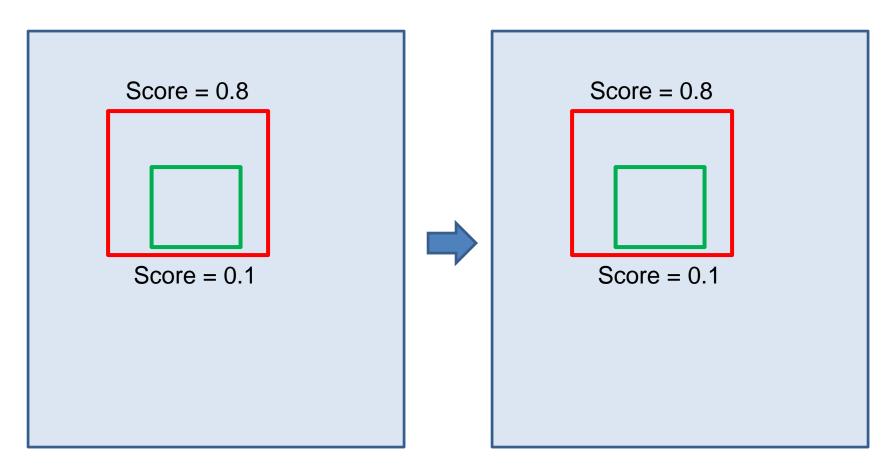
Resolving detection scores

1. Non-max suppression



Resolving detection scores

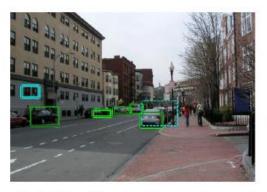
1. Non-max suppression



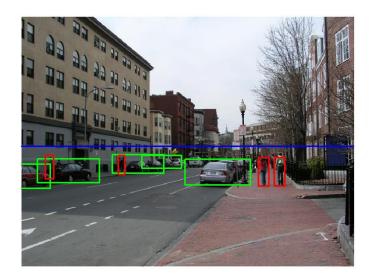
"Overlap" score is below some threshold

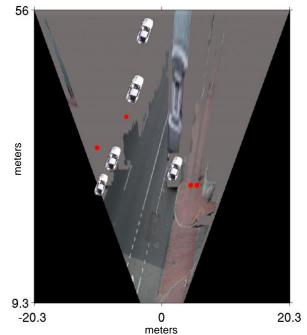
Resolving detection scores

2. Context/reasoning

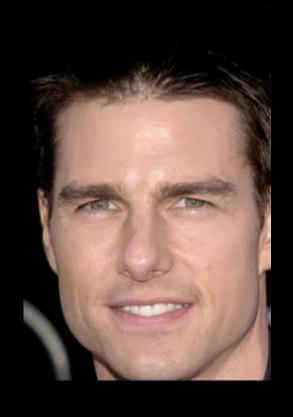


(g) Car Detections: Local (h) Ped Detections: Local



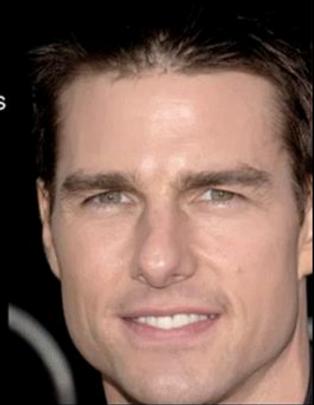


Sliding Window Face Detection with Viola-Jones

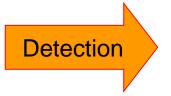


"Flashed Face Distortion"
2nd Place in the 8th Annual
Best Illusion of the Year
Contest, VSS 2012

Keep your eyes on the cross



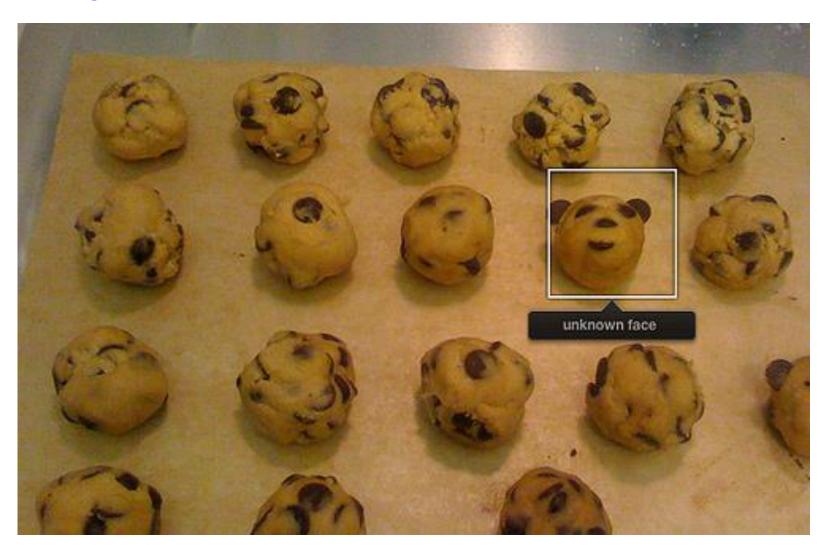
Face detection and recognition



"Sally"

Consumer application: Apple iPhoto

Things iPhoto thinks are faces



Funny Nikon ads

"The Nikon S60 detects up to 12 faces."

Challenges of face detection

 Sliding window detector must evaluate tens of thousands of location/scale combinations

- Faces are rare: 0–10 per image
 - For computational efficiency, we should try to spend as little time as possible on the non-face windows
 - A megapixel image has ~10⁶ pixels and a comparable number of candidate face locations
 - To avoid having a false positive in every image, our false positive rate has to be less than 10-6

The Viola/Jones Face Detector

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast

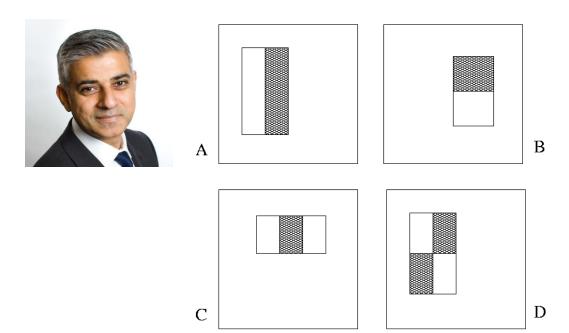
Key ideas:

- 1. Integral images for fast feature evaluation
- 2. Boosting for feature selection
- 3. Attentional cascade for fast non-face window rejection

- P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.
- P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

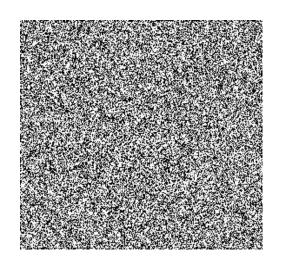
Image Features

"Rectangle filters"



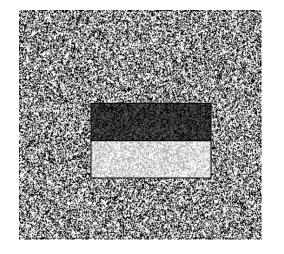
Value = \sum (pixels in white area) - \sum (pixels in black area)

Example



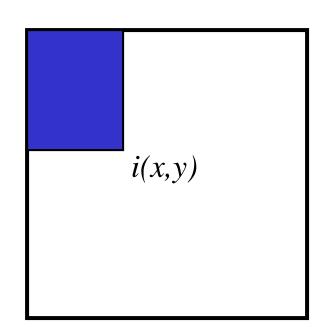
Source

Result



1. Integral images for fast feature evaluation

• The *integral image* computes a value at each pixel (*x*, *y*) that is the sum of *all* pixel values above and to the left of (*x*, *y*), inclusive.

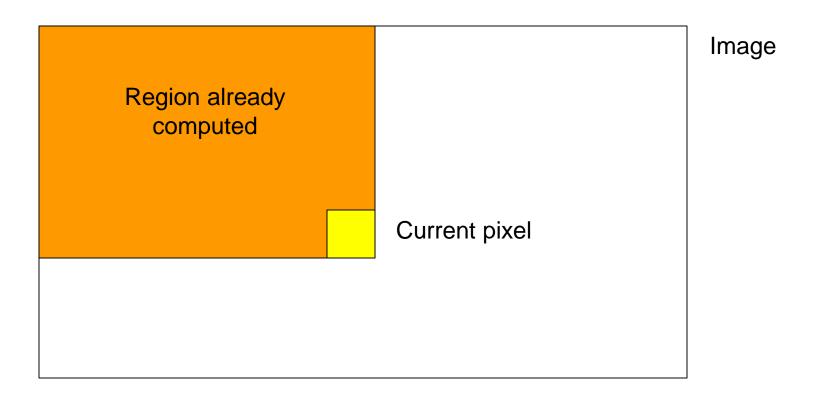


 This can quickly be computed in one pass through the image.

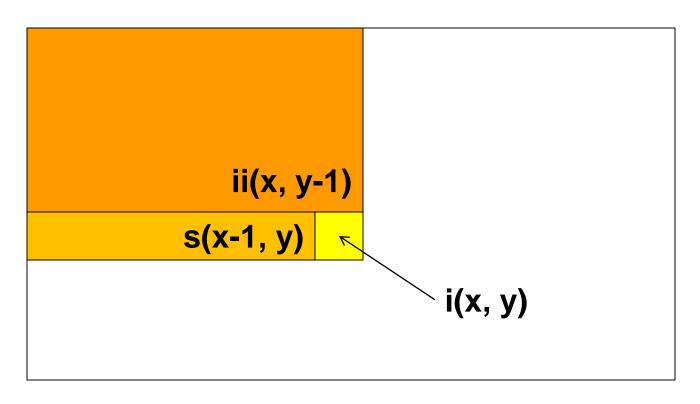
$$I_{\sum}(x,y) = \sum_{\substack{x' \leq x \ y' \leq y}} i(x',y')$$

'Summed area table'

Computing the integral image



Computing the integral image



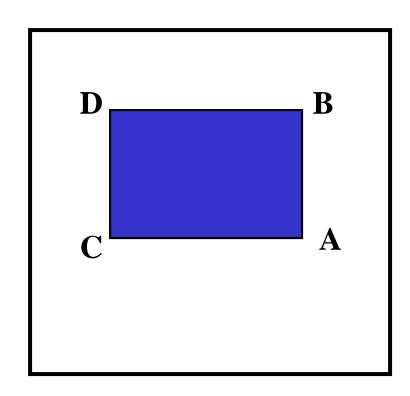
Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)Integral image: ii(x, y) = ii(x, y-1) + s(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);

Computing sum within a rectangle

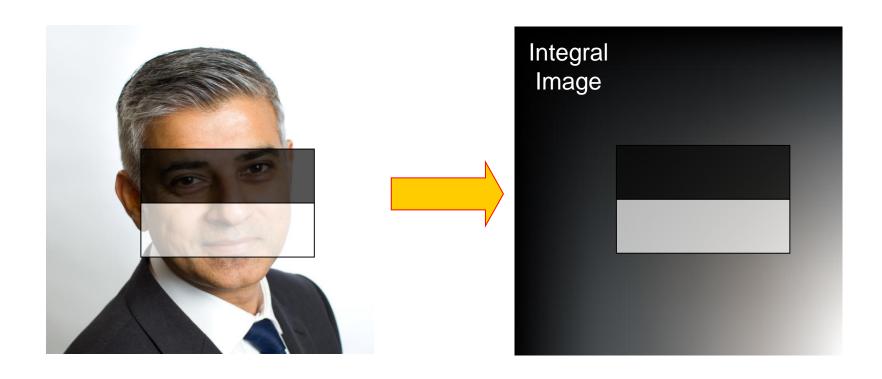
- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- The sum of original image values within the rectangle can be computed as:

$$sum = A - B - C + D$$



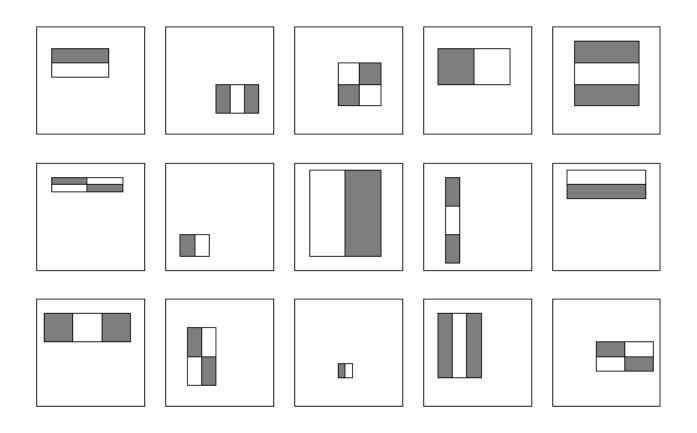
Only 3 additions are required for any size of rectangle!

Computing a rectangle feature



Feature selection

 For a 24x24 detection region, the number of possible rectangle features is ~160,000!



Feature selection

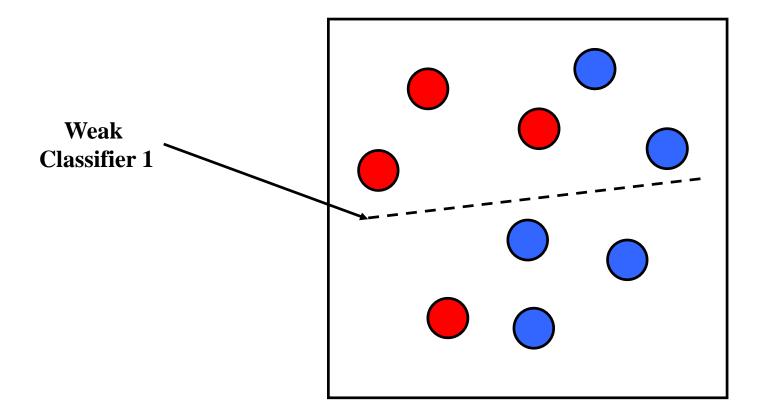
- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?

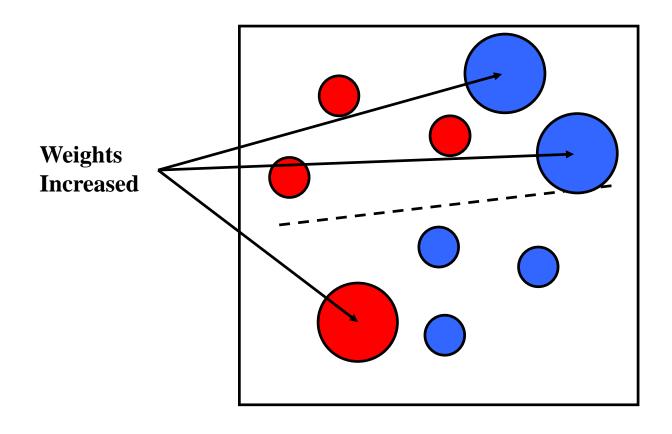
2. Boosting for feature selection

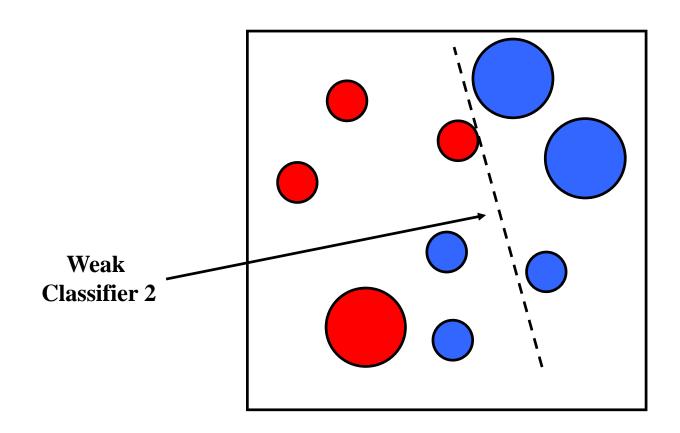
- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
 - Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

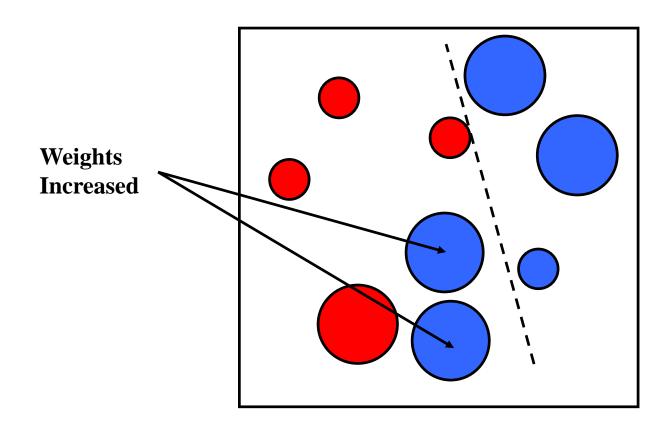
Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999.

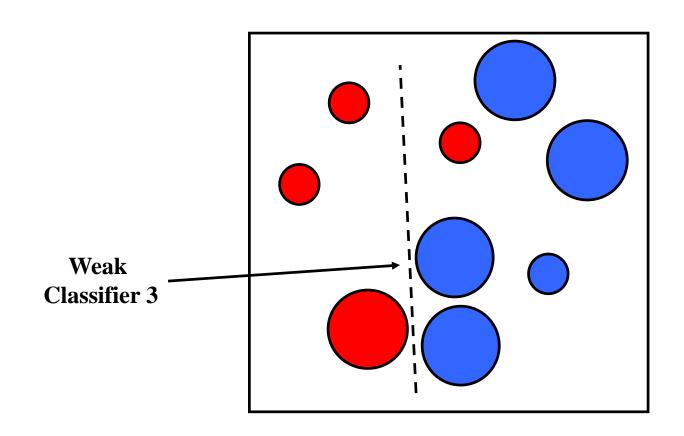
Boosting intuition



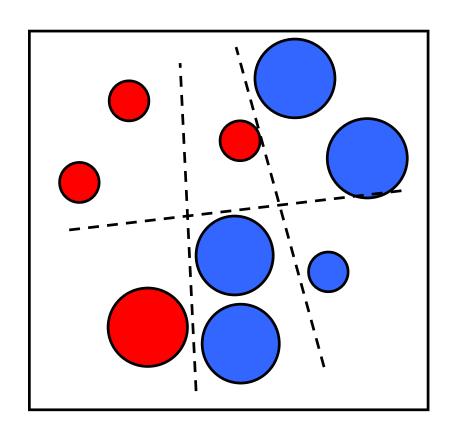






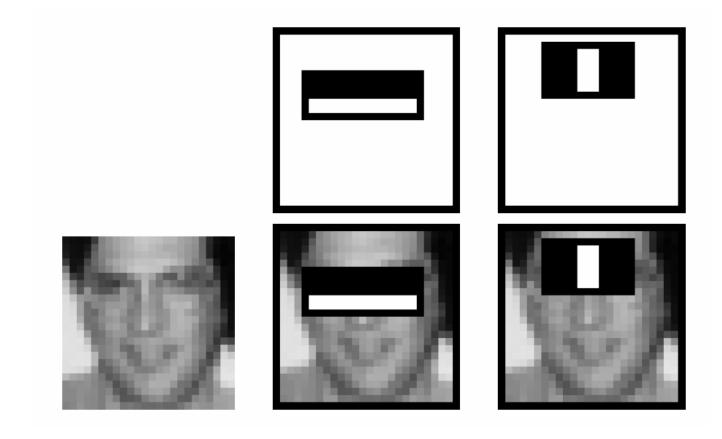


Final classifier is a combination of weak classifiers



Boosting for face detection

First two features selected by boosting:



This feature combination can yield 100% recall and 50% false positive rate

Boosting vs. SVM

Advantages of boosting

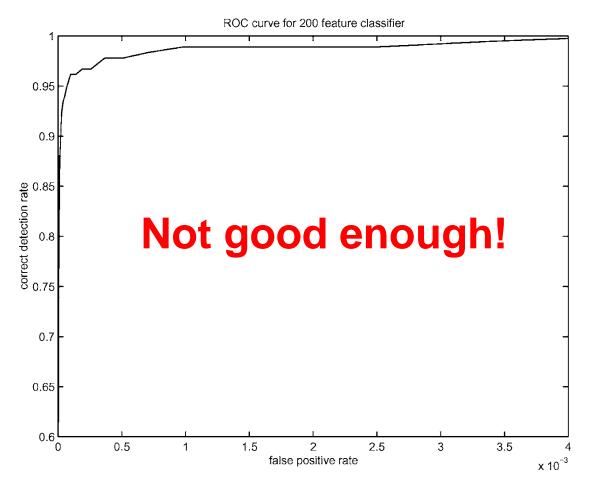
- Integrates classifier training with feature selection
- Complexity of training is linear instead of quadratic in the number of training examples
- Flexibility in the choice of weak learners, boosting scheme
- Testing is fast

Disadvantages

- Needs many training examples
- Training is slow
- Often doesn't work as well as SVM (especially for manyclass problems)

Boosting for face detection

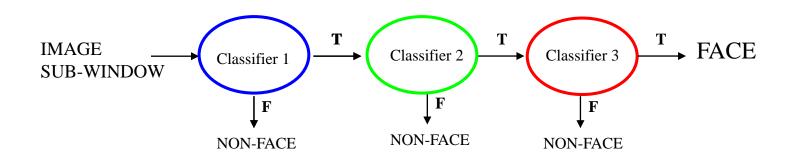
 A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084



Receiver operating characteristic (ROC) curve

Attentional cascade

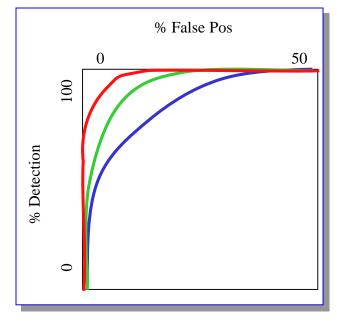
- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window

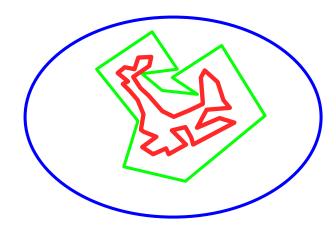


Attentional cascade

 Chain classifiers that are progressively more complex and have lower false positive rates:

Receiver operating characteristic

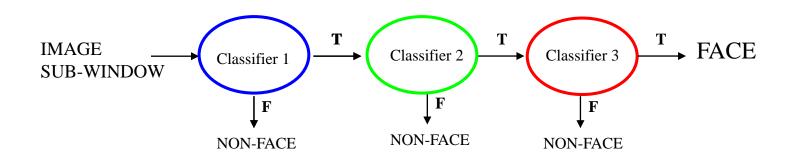






Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate on the order of 10⁻⁶ can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.99¹⁰ ≈ 0.9) and a false positive rate of about 0.30 (0.3¹⁰ ≈ 6×10⁻⁶)



Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower boosting threshold to maximize detection (as opposed to minimizing total classification error)
 - Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

The implemented system

Training Data

- 5000 faces
 - All frontal, rescaled to 24x24 pixels
- 300 million non-faces
 - 9500 non-face images
- Faces are normalized
 - Scale, translation

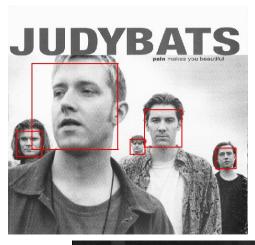
Many variations

- Across individuals
- Illumination
- Pose

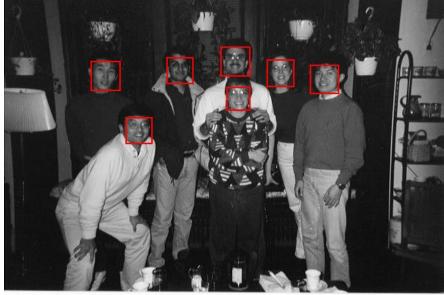
System performance

- Training time: "weeks" on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)

Output of Face Detector on Test Images



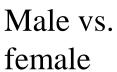


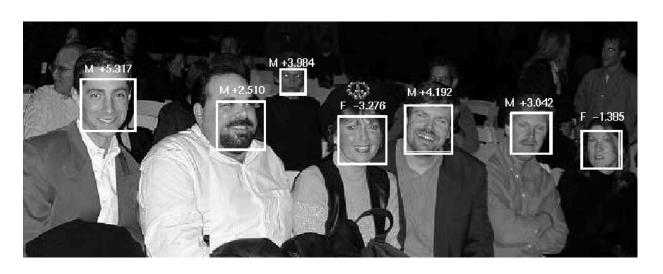


Other detection tasks

Facial Feature Localization

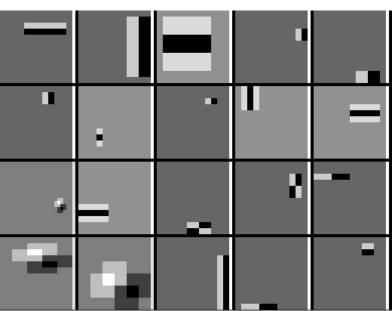
Profile Detection





Profile Detection

Profile Features



Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows