

COMPUTER VISION

Object Detection Design challenges

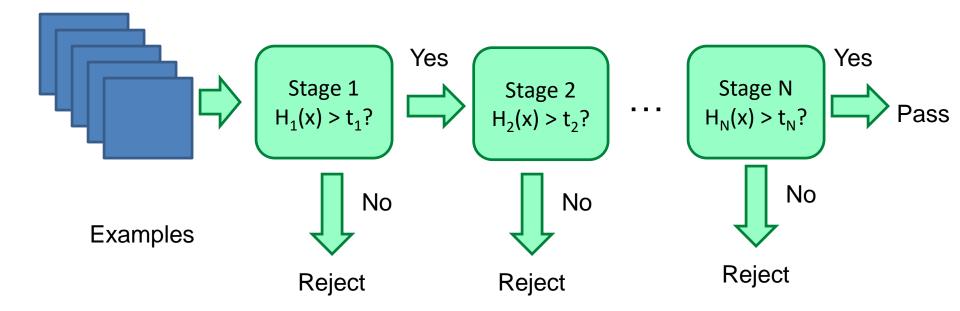
- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales
- Feature design and scoring
 - How should appearance be modeled?
 What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints

Recap: Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

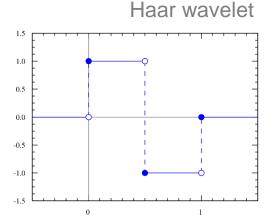
Cascade for Fast Detection



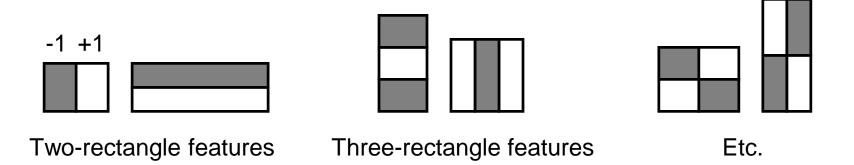
- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

"Haar-like features"

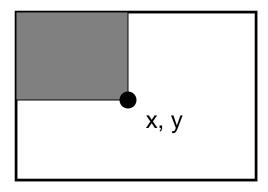


- Differences of sums of intensity
- Thousands, computed at various positions and scales within detection window

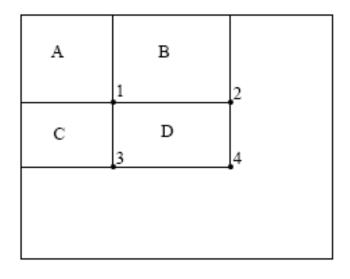


Integral Images

• ii = cumsum(cumsum(im, 1), 2)



ii(x,y) = Sum of the values in the grey region



SUM within Rectangle D is ii(4) - ii(2) - ii(3) + ii(1)

Feature selection with boosting

- Create a large pool of features (180K)
- Select discriminative features that work well together

Final strong learner
$$h(\mathbf{x}) = \mathrm{sign}\left(\sum_{j=1}^{M} \alpha_j h_j(\mathbf{x})\right)$$
 Learner weight

- "Weak learner" = feature + threshold + 'polarity'

$$h_j(\mathbf{x}) = egin{cases} -s_j & ext{if } f_j < heta_j \ s_j & ext{otherwise} \end{cases}$$
 value of rectangle feature threshold

 Choose weak learner that minimizes error on the weighted training set, then reweight

Adaboost pseudocode Szeliski p665

- 1. Input the positive and negative training examples along with their labels $\{(x_i, y_i)\}$, where $y_i = 1$ for positive (face) examples and $y_i = -1$ for negative examples.
- Initialize all the weights to w_{i,1} ← 1/N, where N is the number of training examples. (Viola and Jones (2004) use a separate N₁ and N₂ for positive and negative examples.)
- 3. For each training stage $j = 1 \dots M$:
 - (a) Renormalize the weights so that they sum up to 1 (divide them by their sum).
 - (b) Select the best classifier $h_j(x; f_j, \theta_j, s_j)$ by finding the one that minimizes the weighted classification error

$$e_j = \sum_{i=0}^{N-1} w_{i,j} e_{i,j}, \tag{14.3}$$

$$e_{i,j} = 1 - \delta(y_i, h_j(x_i; f_j, \theta_j, s_j)).$$
 (14.4)

For any given f_j function, the optimal values of (θ_j, s_j) can be found in linear time using a variant of weighted median computation (Exercise 14.2).

(c) Compute the modified error rate β_i and classifier weight α_i,

$$\beta_j = \frac{e_j}{1 - e_j}$$
 and $\alpha_j = -\log \beta_j$. (14.5)

(d) Update the weights according to the classification errors $e_{i,j}$

$$w_{i,j+1} \leftarrow w_{i,j} \beta_j^{1-e_{i,j}}, \tag{14.6}$$

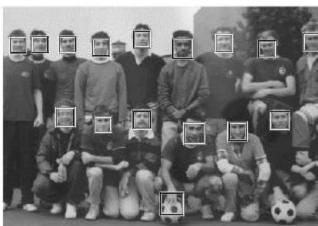
i.e., downweight the training samples that were correctly classified in proportion to the overall classification error.

4. Set the final classifier to

$$h(\boldsymbol{x}) = \operatorname{sign}\left[\sum_{j=0}^{m-1} \alpha_j h_j(\boldsymbol{x})\right]. \tag{14.7}$$

Viola Jones Results

Speed = 15 FPS (in 2001)



False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

- Viola-Jones has a very large space of simple weak 'edge- or pattern-like' classifiers.
- Learn importance/spatial layout of these edges for a particular class.

Can we use a known layout?

Object Detection

- Overview
- Viola-Jones
- Dalal-Triggs
- Deformable models
- Deep learning

Person detection with HoG's & linear SVM's

- Histograms of Oriented Gradients for Human Detection, <u>Navneet Dalal</u>, <u>Bill Triggs</u>, International Conference on Computer Vision & Pattern Recognition - June 2005
- http://lear.inrialpes.fr/pubs/2005/DT05/

Statistical Template

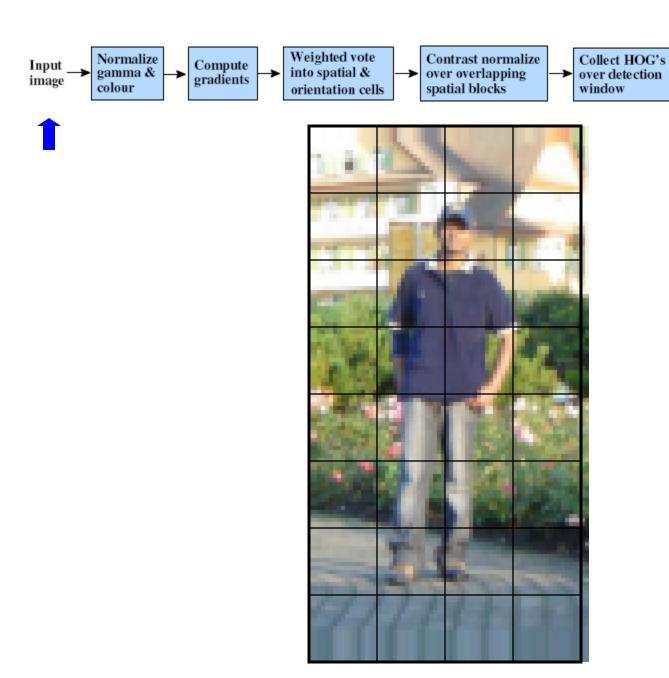
Object model = sum of scores of features at fixed positions

$$+3+2-2-1-2.5 = -0.5 > 7.5$$
Non-object

$$+4+1+0.5+3+0.5=10.5 \stackrel{?}{>} 7.5$$
Object

Example: Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

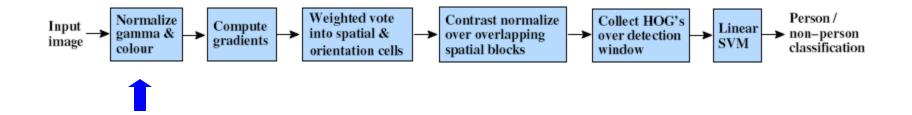


Person/

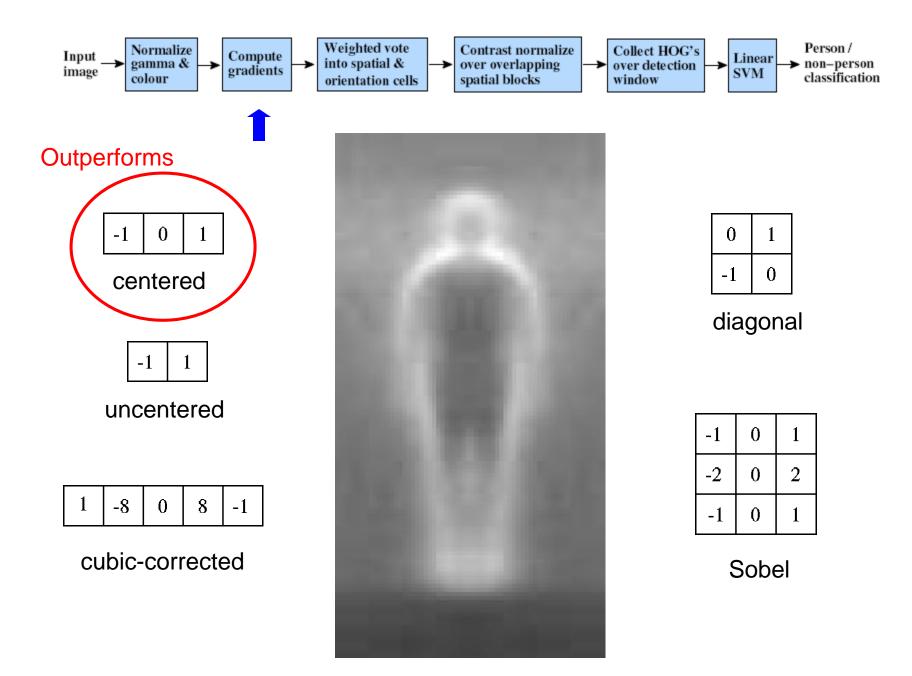
→ non-person classification

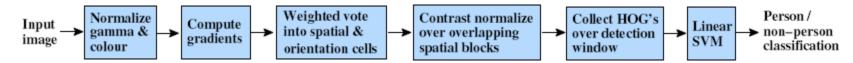
Linear

SVM



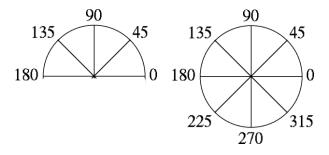
- Tested with
 - RGBSlightly better performance vs. grayscale
 - Grayscale
- Gamma Normalization and Compression
 - Square root
 Very slightly better performance vs. no adjustment
 - Log



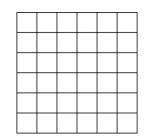


Histogram of Oriented Gradients

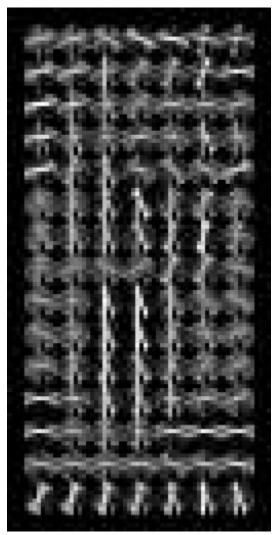
Orientation: 9 bins (for unsigned angles 0 -180)

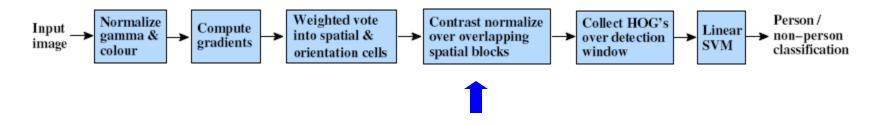


Histograms in k x k pixel cells

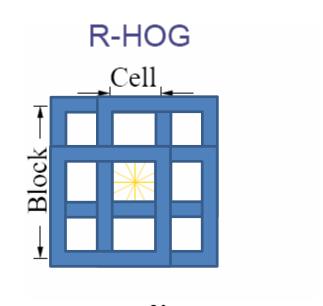


- Votes weighted by magnitude
- Bilinear interpolation between cells



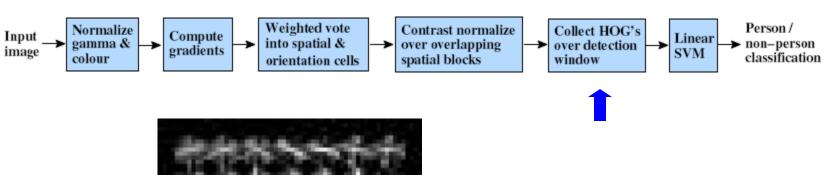


Normalize with respect to surrounding cells



$$f = rac{v}{\sqrt{\|v\|_2^2 + e^2}}$$

e is a small constant

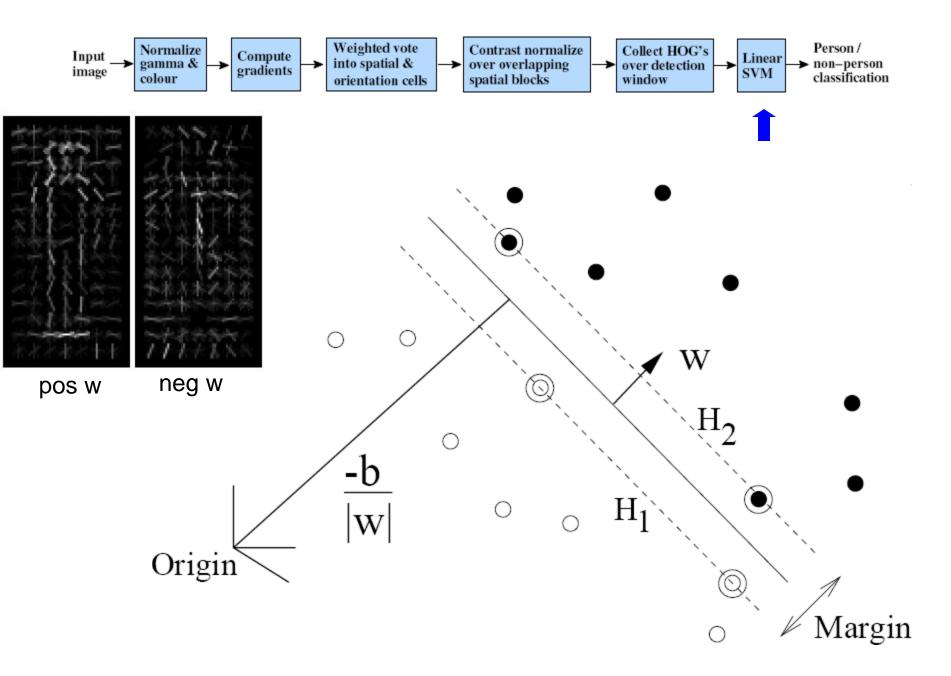


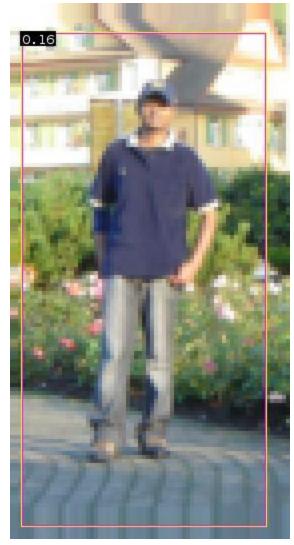
X=

orientations

features = 15 x 7 x 9 x 4 = 3780

cells # normalizations by neighboring cells



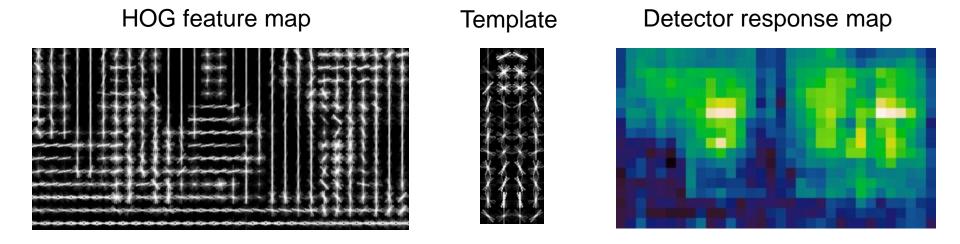


$$0.16 = w^T x - b$$

$$sign(0.16) = 1$$

Pedestrian detection with HOG

- Learn a pedestrian template using a support vector machine
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG pyramid



N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Something to think about...

- Sliding window detectors work
 - very well for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs
- Why are some classes easier than others?

Strengths/Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
- Fast detection

Weaknesses

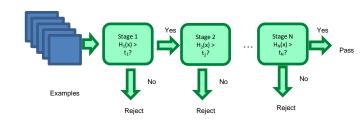
- Not so well for highly deformable objects or "stuff"
- Not robust to occlusion
- Requires lots of training data

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate
- Template size
 - Typical choice is size of smallest expected detectable object
- "Jittering" or "augmenting" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples.
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - 2. Train detector
 - Sample negative examples that score > -1
 - 4. Repeat until all high-scoring negative examples fit in memory

Things to remember

- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
 - Excellent results = careful feature design
- Boosting for feature selection
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples



Project 5

- Train Dalal-Triggs model for faces
- Classify examples

We need some test photographs...