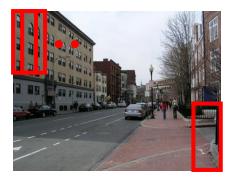
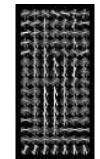
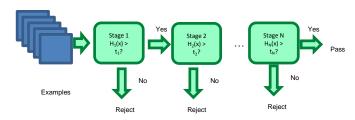


Things to remember

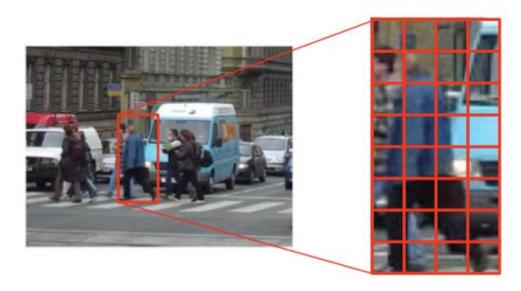
- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
 - Excellent results require careful feature design
- Boosting for feature selection
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples







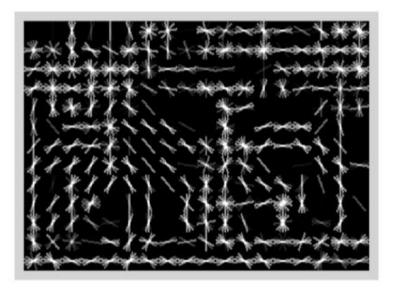
Starting point: sliding window classifiers



Feature vector $x = [\dots, \dots, \dots, \dots]$

- Detect objects by testing each subwindow
 - Reduces object detection to binary classification
 - Dalal & Triggs: HOG features + linear SVM classifier
 - Previous state of the art for detecting people

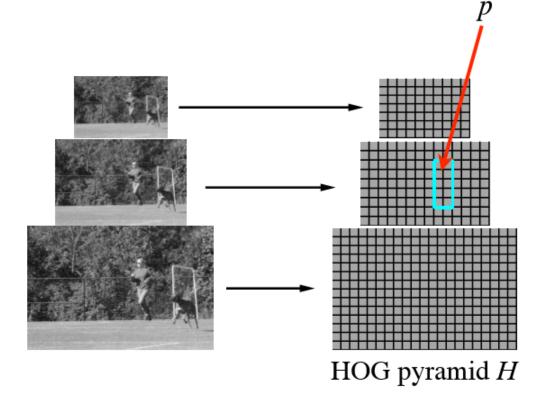
Histogram of Gradient (HOG) features



- Image is partitioned into 8x8 pixel blocks
- In each block we compute a histogram of gradient orientations
 - Invariant to changes in lighting, small deformations, etc.
- Compute features at different resolutions (pyramid)

HOG Filters

- Array of weights for features in subwindow of HOG pyramid
- Score is dot product of filter and feature vector

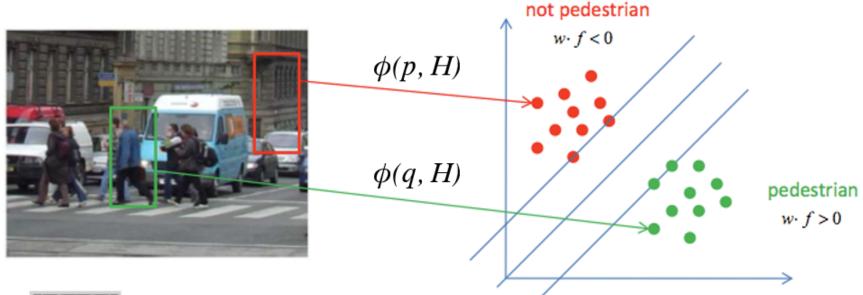


Filter F

Score of *F* at position *p* is $F \cdot \phi(p, H)$

 $\phi(p, H)$ = concatenation of HOG features from subwindow specified by *p*

Dalal & Triggs: HOG + linear SVMs



Typical form of a model

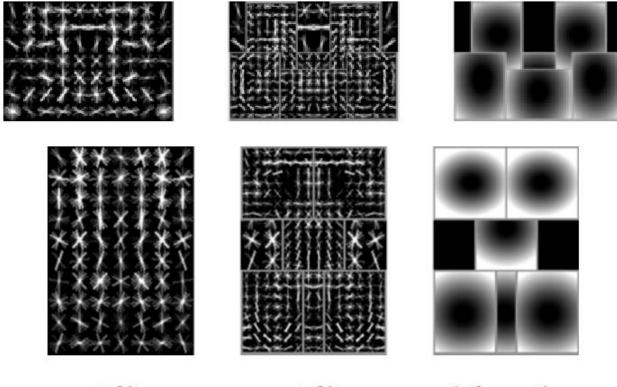
There is much more background than objects Start with random negatives and repeat:

1) Train a model

2) Harvest false positives to define "hard negatives"

Felzenszwalb

Discriminative part-based models



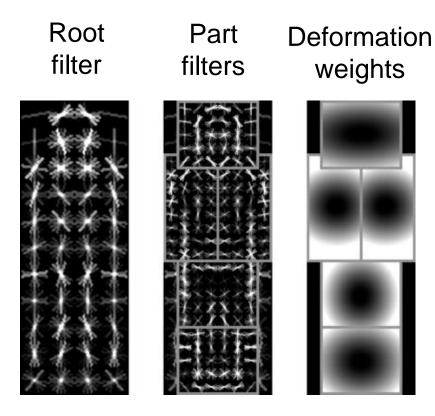
root filters coarse resolution

part filters finer resolution

deformation models

Each component has a root filter F_0 and *n* part models (F_i , v_i , d_i)

Discriminative part-based models

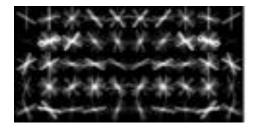


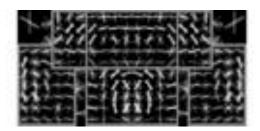
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection</u> with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

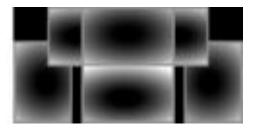
Felzenszwalb

Car model

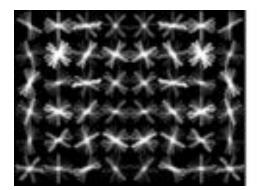
Component 1

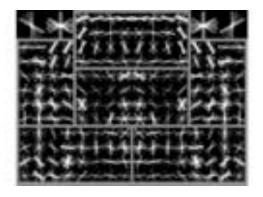


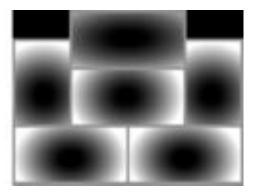




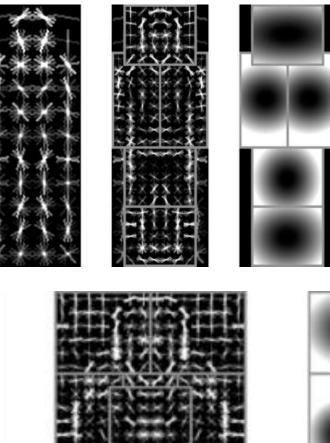
Component 2

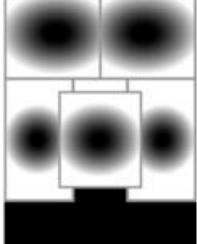




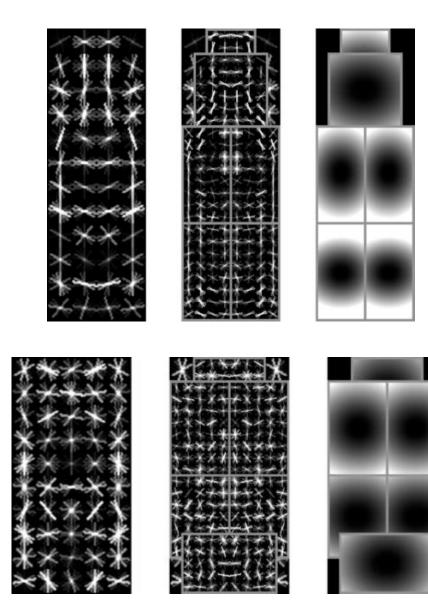


Person model



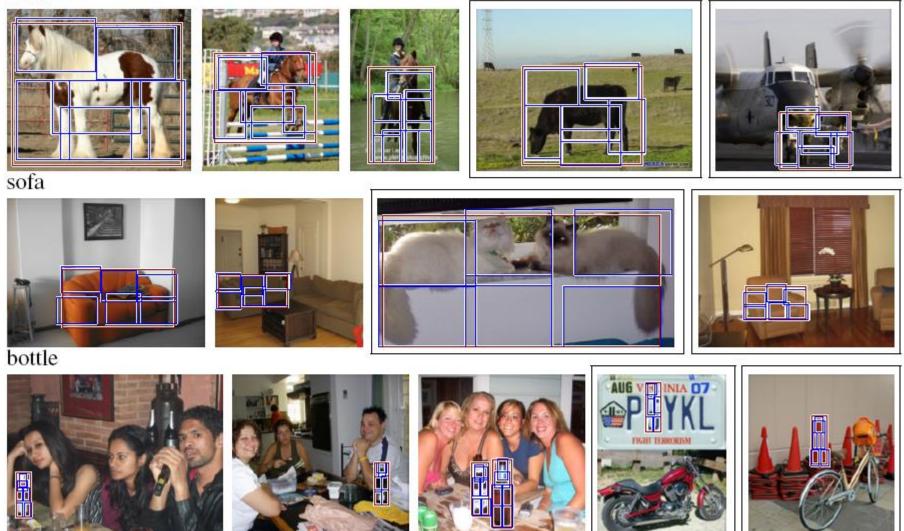


Bottle model



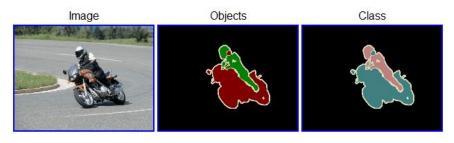
More detections

horse



The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- Twenty object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge



- Images downloaded from flickr
 - 500,000 images downloaded and random subset selected for annotation

Dataset: Annotation

- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

Dataset: Annotation

- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

20 classes.

- Train / validation data has 11,530 images containing 27,450 ROI annotated objects and 6,929 segmentations.

Examples

Bicycle

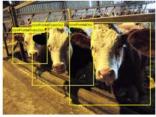
Bird

Boat

Bottle

Bus

Cow

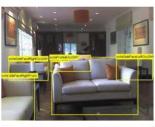


Examples

Dog

Horse

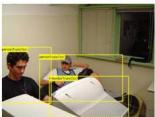
Sofa



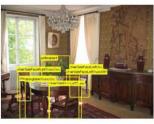
Motorbike

Person

TV/Monitor



Potted Plant





Classification Challenge

Predict whether at least one object of a given class is present in an image

is there a cat?

Results: AP by Method and Class

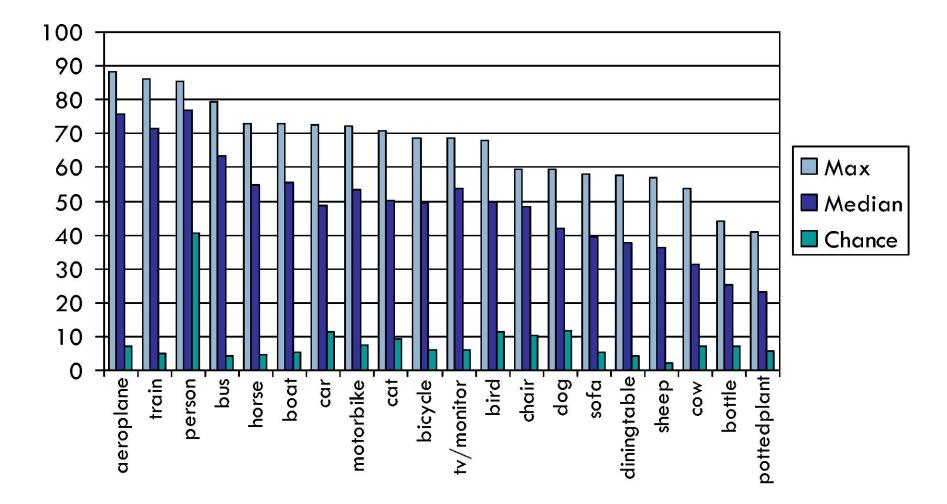
	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor
CVC_FLAT	85.3	57.8	66.0	66.1	36.2	70.6	60.6	63.5	55.1	44.6	53.4	49.1	64.4	66.8	84.8	37.4	44.1	47.9	81.9	67.5
CVC_FLAT-HOG-ESS	86.3	60.7	66.4	65.3	41.0	71.7	64.7	63.9	55.5	40.1	51.3	45.9	65.2	68.9	85.0	40.8	49.0	49.1	81.8	68.6
CVC_PLUS	86.6	58.4	66.7	67.3	34.8	70.4	60.0	64.2	52.5	43.0	50.8	46.5	64.1	66.8	84.4	37.5	45.1	45.4	82.1	67.0
FIRSTNIKON_AVGSRKDA	83.3	59.3	62.7	65.3	30.2	71.6	58.2	62.2	54.3	40.7	49.2	50.0	66.6	62.9	83.3	34.2	48.2	46.1	83.4	65.5
FIRSTNIKON_AVGSVM	83.8	58.2	62.6	65.2	32.0	69.8	57.7	61.1	54.5	44.0	50.3	49.6	64.6	61.7	83.2	33.4	46.5	48.0	81.6	65.3
FIRSTNIKON_BOOSTSRKDA	83.0	59.2	61.4	64.6	33.2	71.1	57.5	61.0	54.8	40.7	48.3	50.0	65.5	63.4	82.8	32.8	47.0	47.1	83.3	64.6
FIRSTNIKON_BOOSTSVMS	83.5	56.8	61.8	65.5	33.2	69.7	57.3	60.5	54.6	43.1	48.3	50.3	64.3	62.4	82.3	32.9	46.9	48.4	82.0	64.2
LEAR_CHI-SVM-MULT-LOC	79.5	55.5	54.5	63.9	43.7	70.3	66.4	56.5	54.4	38.8	44.1	46.2	58.5	64.2	82.2	39.1	41.3	39.8	73.6	66.2
NECUIUC_CDCV	88.1	6 8. 0	68.0	72.5	41.0	78.9	70.4	70.4	58.1	53.4	55.7	59.3	73.1	71.3	84.5	32.3	53.3	56.7	86.0	66.8
NECUIUC_CLS-DTCT	88.0	68.6	67.9	72.9	44.2	79.5	72.5	70 .8	59.5	53.6	57.5	59.0	72.6	72.3	85.3	36.6	56.9	57.9	85.9	68.0
NECUIUC_LL-CDCV	87.1	67.4	65.8	72.3	40.9	78.3	69.7	69.7	58.5	50.1	55.1	56.3	71.8	70.8	84.1	31.4	51.5	55.1	84.7	65.2
NECUIUC_LN-CDCV	87.7	67.8	68.1	71.1	39.1	78.5	70.6	70.7	57.4	51.7	53.3	59.2	71.6	70.6	84.0	30.9	51.7	55.9	85.9	66.7
UVASURREY_BASELINE	84.1	59.2	62.7	65.4	35.7	70.6	59.8	61.3	56.7	45.3	52.4	50.6	66.1	66.6	83.7	34.8	47.2	47.7	80.8	65.9
UVASURREY_MKFDA+BOW	84.7	63.9	66.1	67.3	37.9	74.1	63.2	64.0	57.1	46.2	54.7	53.5	68.1	70.6	85.2	38.5	47.2	49.3	83.2	68.1
UVASURREY_TUNECOLORKERNELSEL	85.0	62.8	65.1	66.5	37.6	73.5	62.1	62.0	57.4	45.1	54.5	52.5	67.7	69.8	84.8	39.1	46.8	49.9	82.9	68.1
UVASURREY_TUNECOLORSPECKDA	84.6	62.4	65.6	67.2	39.4	74.0	63.4	62.8	56.7	43.8	54.7	52.7	67.3	70.6	85.0	38.8	46.9	50.0	82.2	66.2

Only methods in 1st, 2nd or 3rd place by group shown

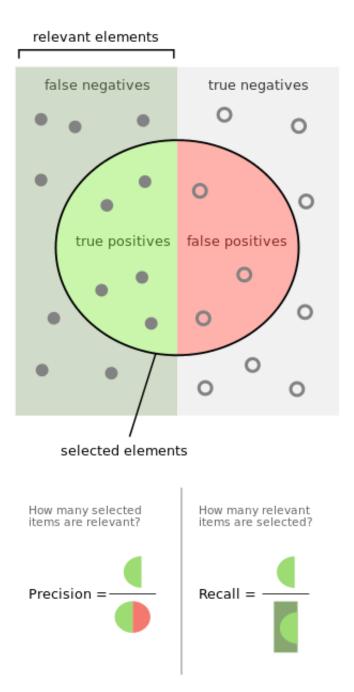
Groups: CVC, FIRST/Nikon, NEC/UIUC, UVA/Surrey

AP by Class

AP = average precision

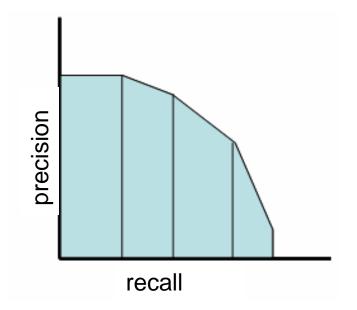


Max AP: 88.1% (aeroplane) ... 40.8% (potted plant)

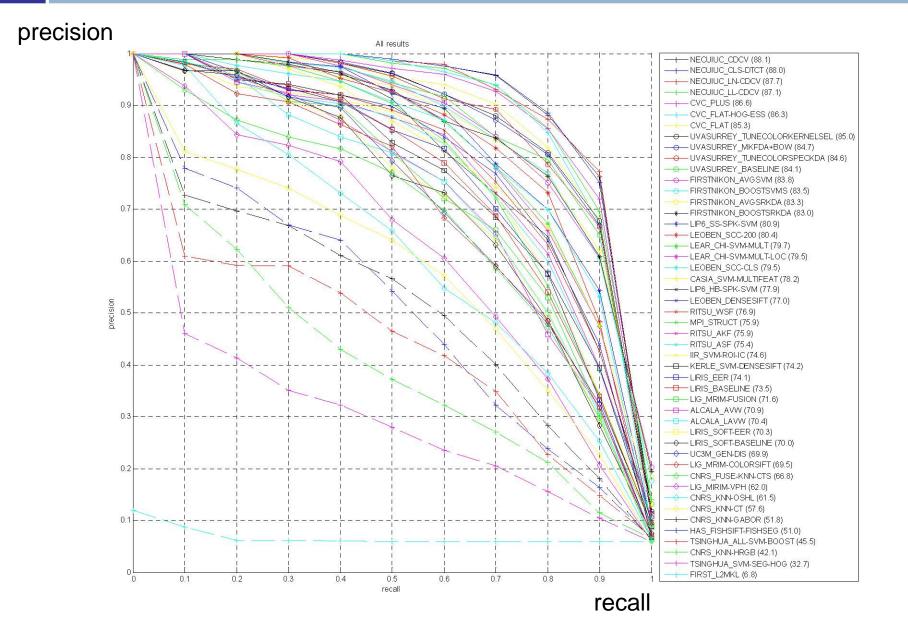


Set threshold on 'detection' to create one pair of precision / recall values.

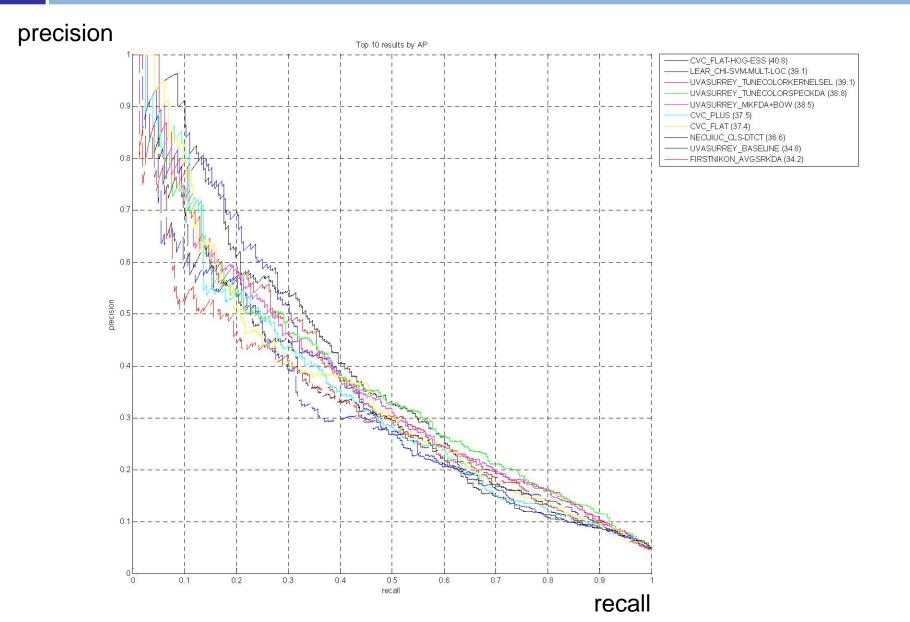
Vary threshold across all values to generate precision / recall curves:



Precision/Recall: Aeroplane (All)



Precision/Recall: Potted plant (Top 10 by AP)

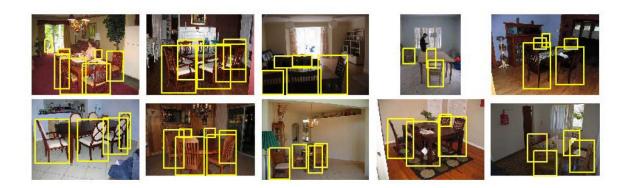


Ranked Images: Aeroplane

Class images:
 Highest ranked

Ranked Images: Chair

Class images:
 Highest ranked

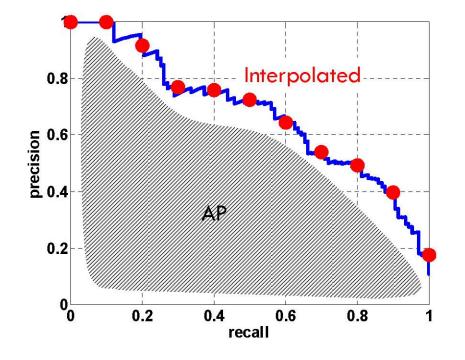


Detection Challenge

 Predict the bounding boxes of all objects of a given class in an image (if any)

Evaluation

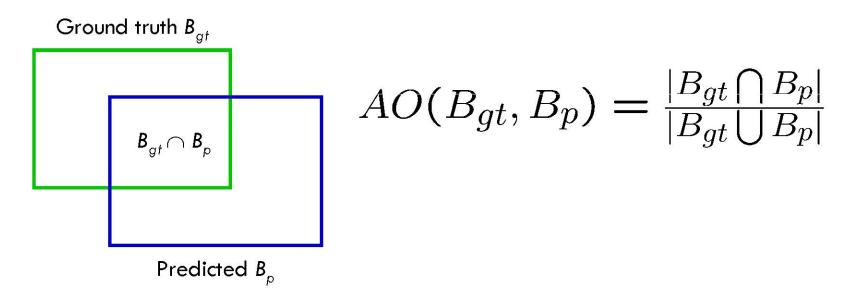
- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"



- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

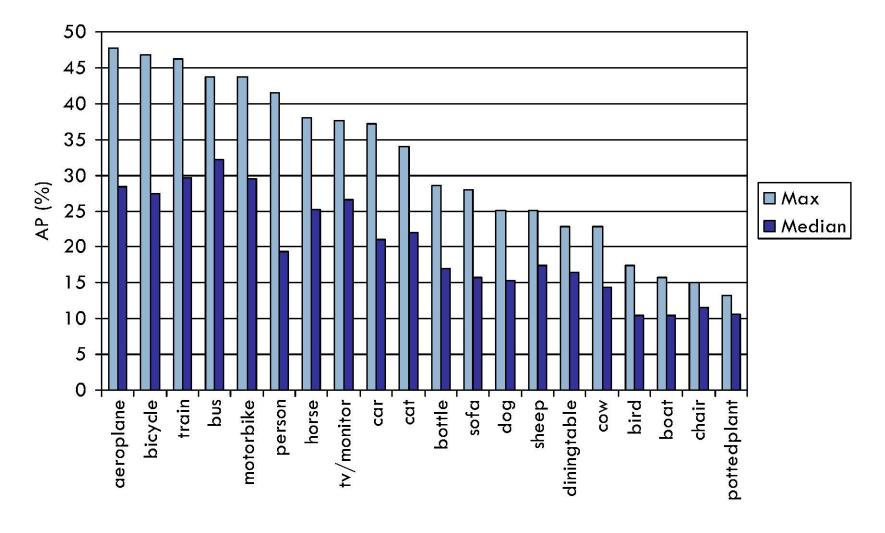
Evaluating Bounding Boxes

Area of Overlap (AO) Measure



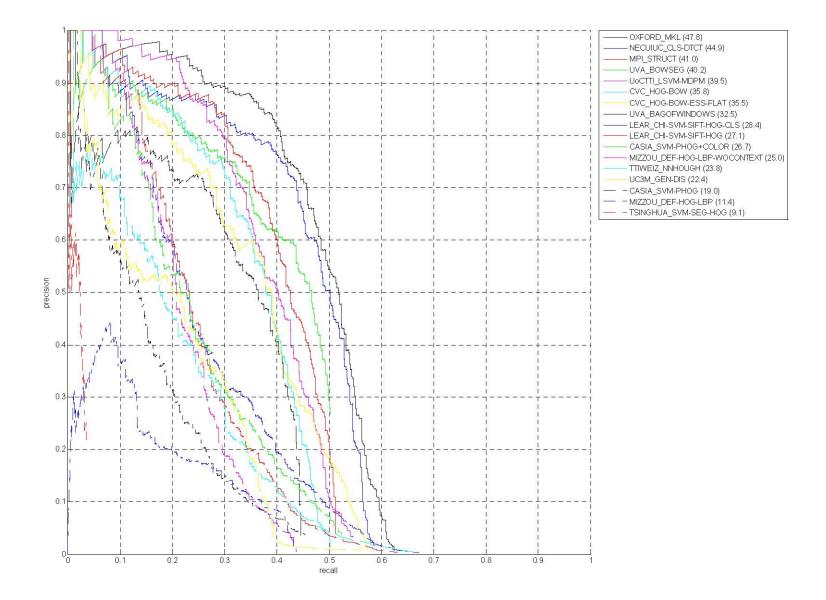
• Need to define a threshold *t* such that $AO(B_{gt}, B_p)$ implies a correct detection: 50%

AP by Class

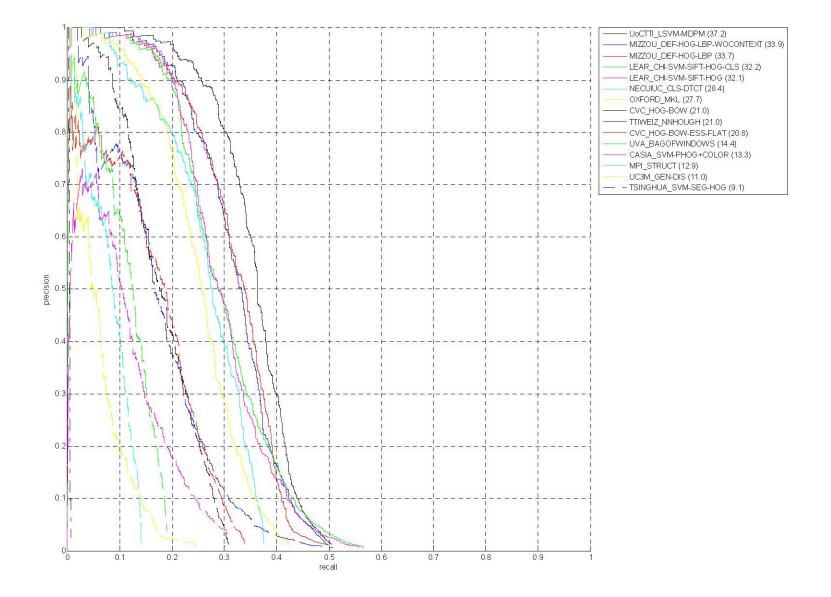


Chance essentially 0

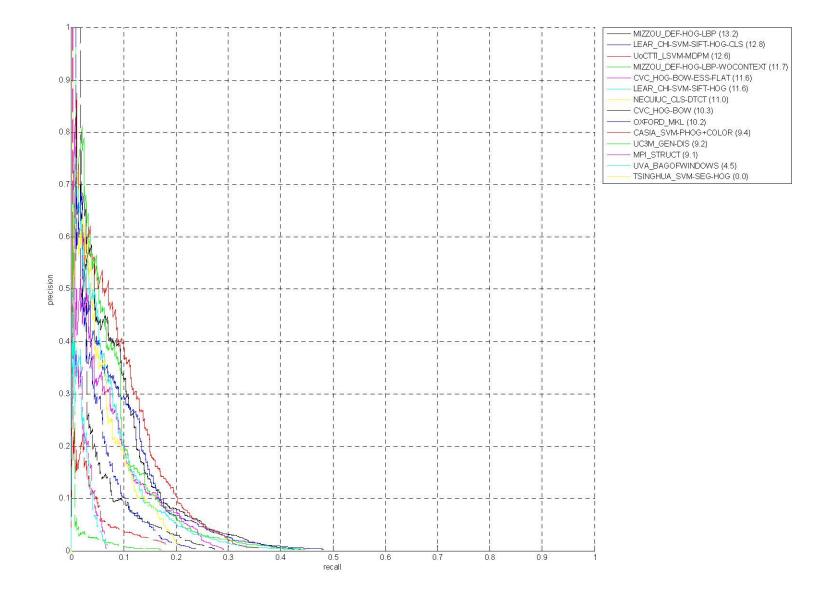
Precision/Recall - Aeroplane



Precision/Recall - Car



Precision/Recall – Potted plant



True Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

False Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

"Near Misses" - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

True Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

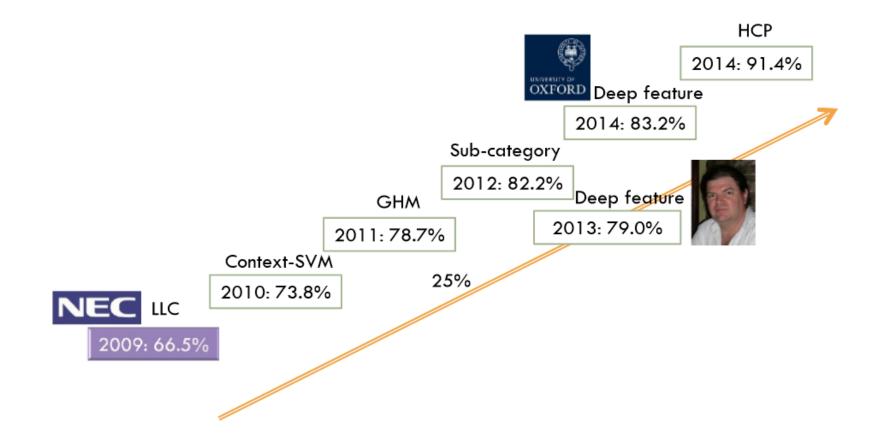
False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

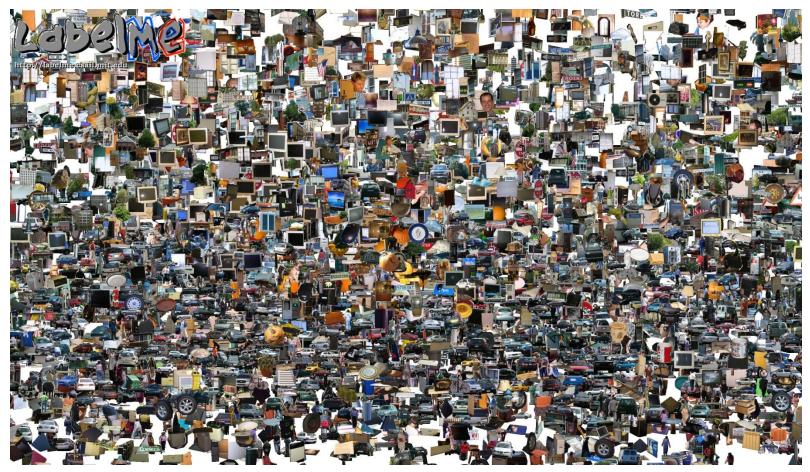
NECUIUC_CLS-DTCT

PASCAL VOC: 2010-2014



Shuicheng Yan

Opportunities of Scale



Computer Vision

James Hays

Many slides from James Hays, Alyosha Efros, and Derek Hoiem

Graphic from Antonio Torralba

Computer Vision so far

- The geometry of image formation
 Ancient / Renaissance
- Signal processing / Convolution
 1800, but really the 50's and 60's
- Hand-designed Features for recognition, either instance-level or categorical
 - 1999 (SIFT), 2003 (Video Google), 2005 (Dalal-Triggs), 2006 (spatial pyramid)
- Learning from Data
 - 1991 (EigenFaces) but late 90's to now especially

What has changed in the last decade?

- The Internet
- Crowdsourcing
- Learning representations from the data these sources provide (deep learning)

Google and massive data-driven algorithms

A.I. for the postmodern world:

- all questions have already been answered...many times, in many ways
- Google is dumb, the "intelligence" is in the data

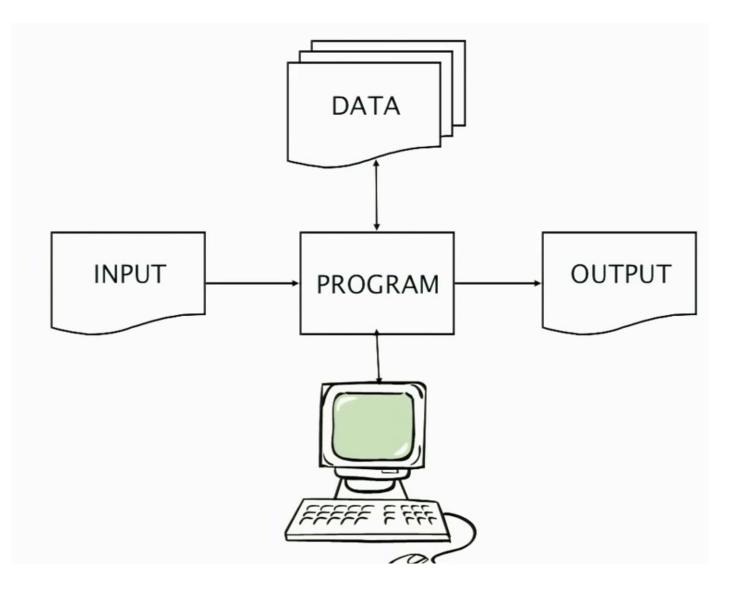
💥 Google Search: clime stairs - Netscape										
File Edit Vie	The search: clime punishment - Netscape									
ack	File Edit View Go C									
Back	i 🔺 🔉	3. 🚯	1	mg.	4	e£.	ô.			N
🧃 💘 Bool	Back Forward	Reload Home	Search	Netscape	Print	Security	Shop	Stop		
🦉 🖳 WebM	👔 🏾 🐝 Bookmarks 🕼 Location: http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=clime+punishment 🛛 💽 🌍 🖤 What's Related									elated
	🛛 🖳 WebMail 🖳 C	alendar 🖳 Radio	🖳 People	🖳 Yellow F	Pages 🛛	🔋 Download	🖳 Cus	tomize		
C	<u> </u>	Ad	vanced Se	earch	Prefer	rences	Langua	age Tools	Search Tips	-
	Cime punishment									
	Google Search									
Web			Guugie 3	bearch						
Searche	Web Images Groups Directory News									
	Searched the web for clime punishment. Results 1 - 10 of about 4,250. Search took 0.06 second									
Did you				<u>n</u> . 10000			our 4,2		1100h 0.00 300	
Did you	Did you moo	n: orimo pi	nichmo	nt						
	Did you mean: <u>crime punishment</u>									

The Unreasonable Effectiveness of Data

Peter Norvig Google

Peter Norvig

The Unreasonable Effectiveness of Data



Chinese Room, John Searle (1980)

If a machine can convincingly simulate an intelligent conversation, does it necessarily understand? In the experiment, Searle imagines himself in a room, acting as a computer by manually executing a program that convincingly simulates the behavior of a native Chinese speaker.

Most of the discussion consists of attempts to refute it. "The overwhelming majority," notes *BBS* editor Stevan Harnad," still think that the Chinese Room Argument is dead wrong." The sheer volume of the literature that has grown up around it inspired Pat Hayes to quip that the field of cognitive science ought to be redefined as "the ongoing research program of showing Searle's Chinese Room Argument to be false.

Questions from the piece:

Q1. Does the Chinese Room argument prove the impossibility of machine consciousness?

A1: Hell no. ... See More

Can Machines Become Moral?

The question is heard more and more often, both from those who think that machines cannot become moral, and who think that to believe otherwise is a dangerous illusion, and from those who think that machines must become moral,...

BIGQUESTIONSONLINE.COM | BY DON HOWARD

30 Comments 20 Shares

Big Idea

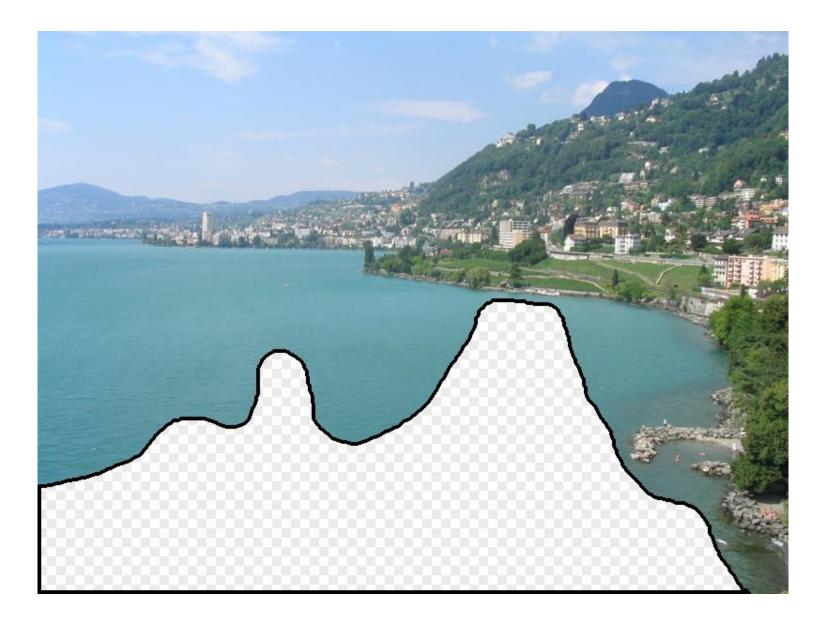
- Do we need computer vision systems to have strong AI-like reasoning about our world?
- What if invariance / generalization isn't actually the core difficulty of computer vision?
- What if we can perform high level reasoning with brute-force, data-driven algorithms?

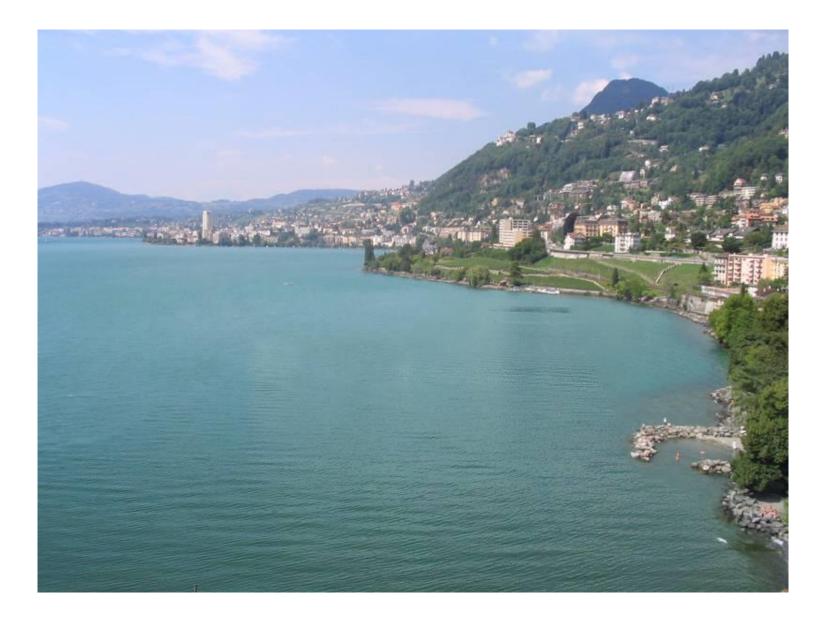
Image Completion Example

[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

http://graphics.cs.cmu.edu/projects/scene-completion/

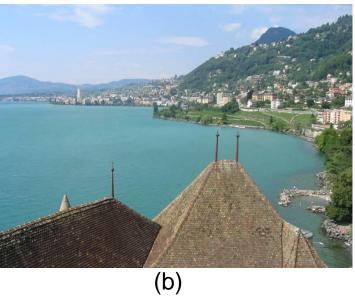
What should the missing region contain?





Which is the original?

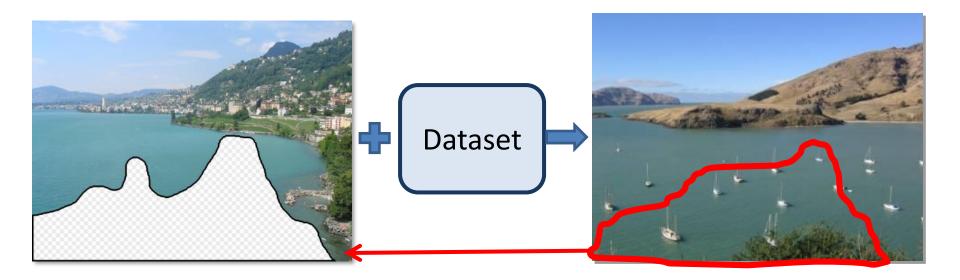
(a)



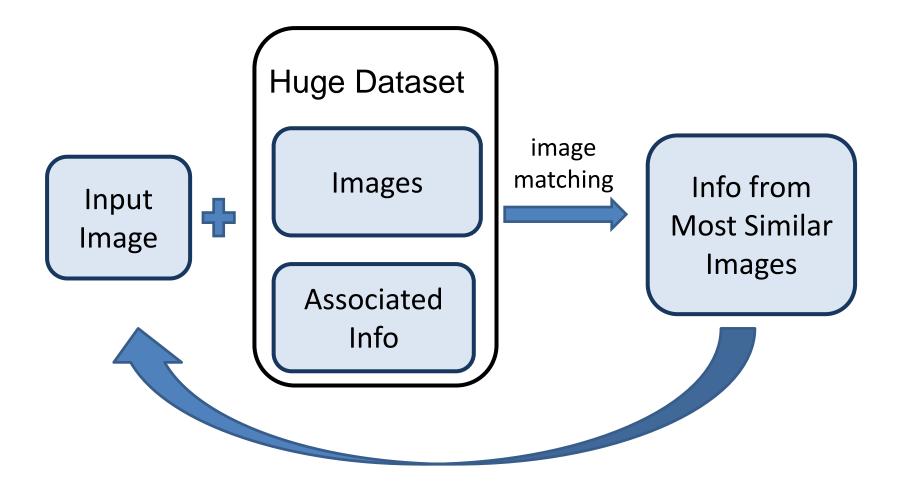
(C)

How it works

- Find a similar image from a large dataset
- Blend a region from that image into the hole



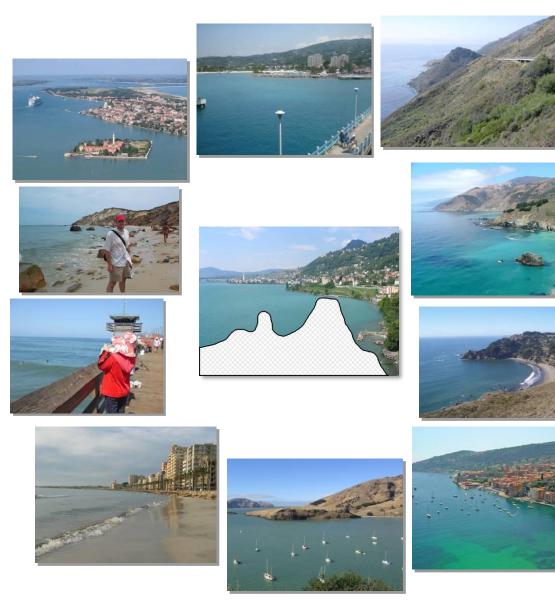
General Principal



Hopefully, If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

How many images is enough?

Nearest neighbors from a collection of 20 thousand images



Nearest neighbors from a collection of 2 million images

Image Data on the Internet

- Flickr (as of Sept. 19th, 2010)
 - 5 billion photographs
 - 100+ million geotagged images
- Facebook (as of 2009)
 - 15 billion

http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/

Image Data on the Internet

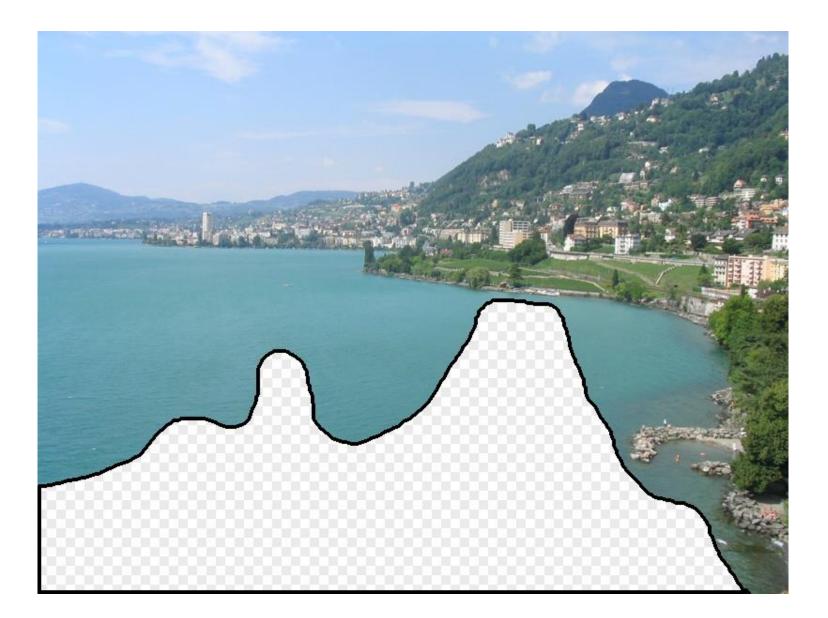
- Flickr (as of Nov 2013)
 - 10 billion photographs
 - 100+ million geotagged images
 - 3.5 million a day
- Facebook (as of Sept 2013)
 - 250 billion+
 - 300 million a day
- Instagram
 - 55 million a day

Image completion: how it works

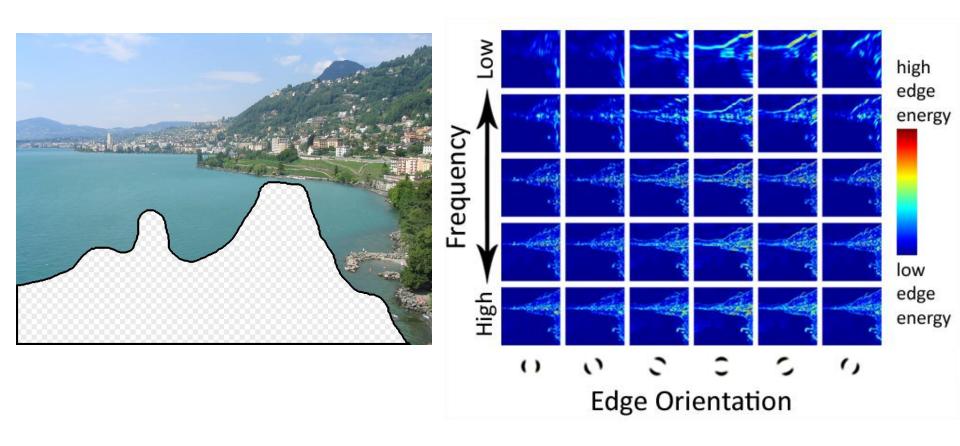
[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

The Algorithm

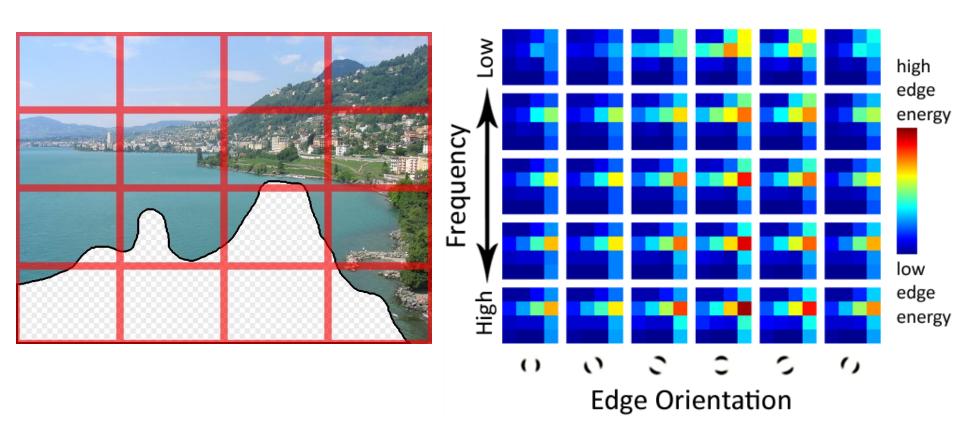
Scene Matching



Scene Descriptor

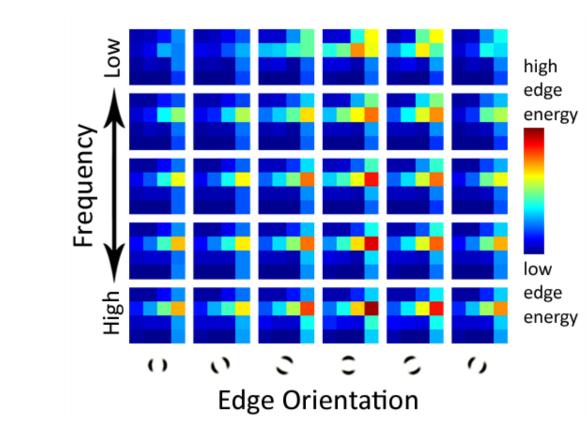


Scene Descriptor

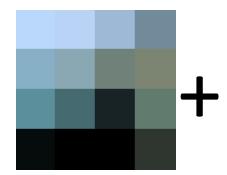


Scene Gist Descriptor (Oliva and Torralba 2001)

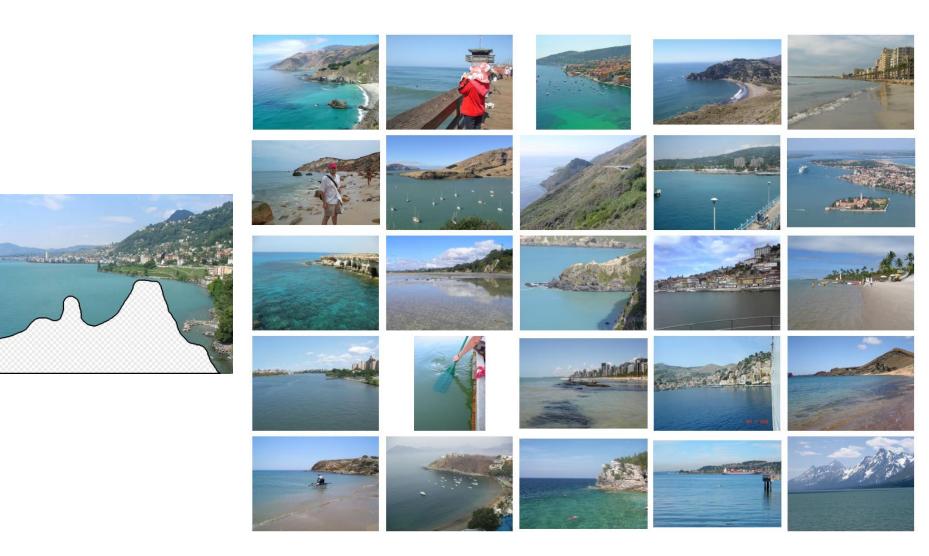
Scene Descriptor



Scene Gist Descriptor (Oliva and Torralba 2001)

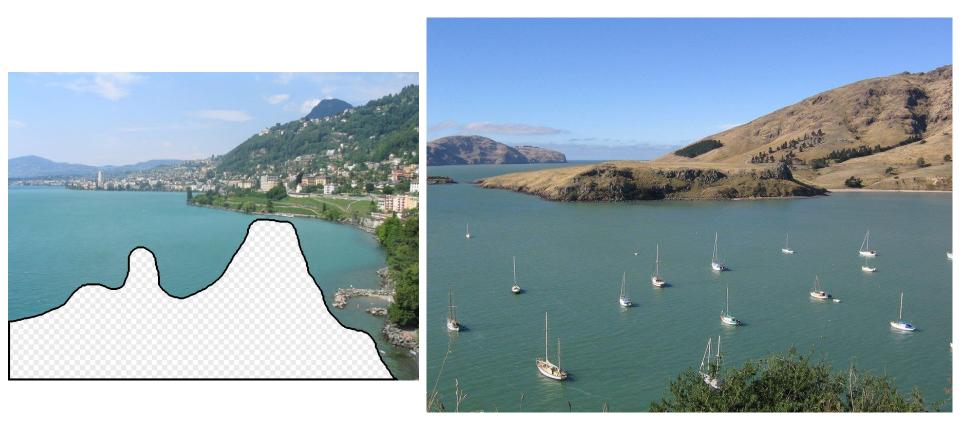


2 Million Flickr Images



... 200 total

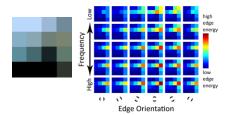
Context Matching



Graph cut + Poisson blending

Result Ranking

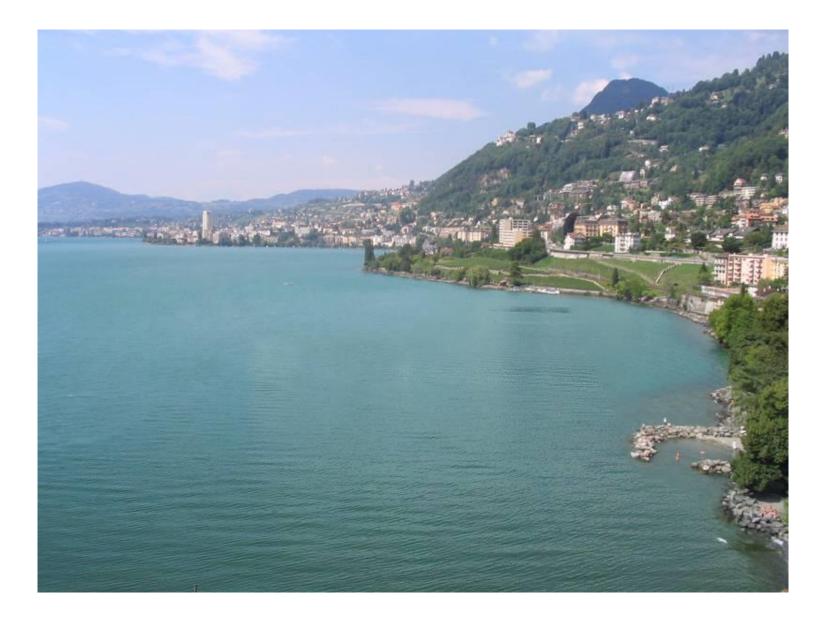
We assign each of the 200 results a score which is the sum of:

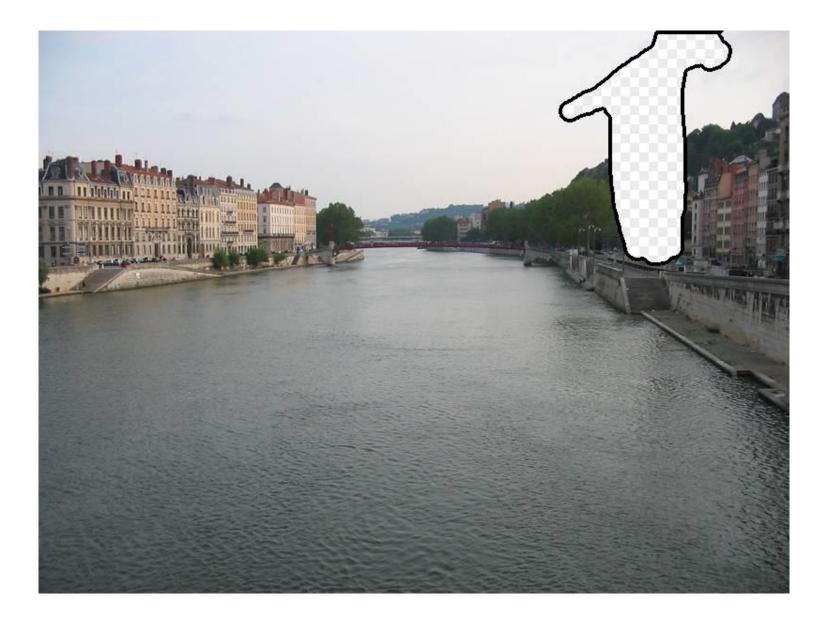


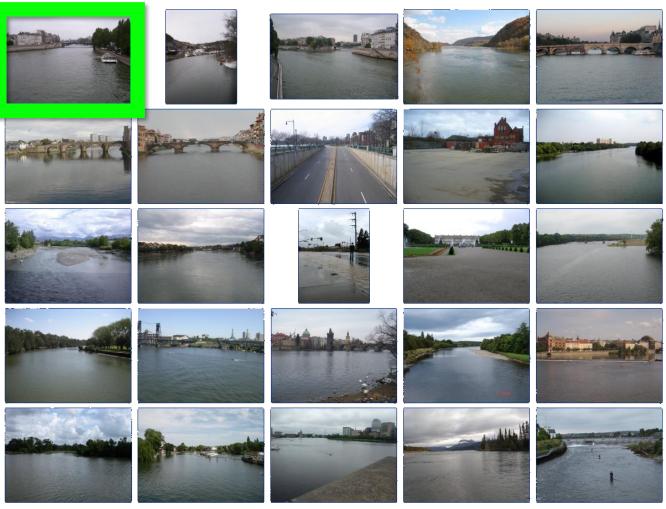
The scene matching distance

The context matching distance (color + texture)

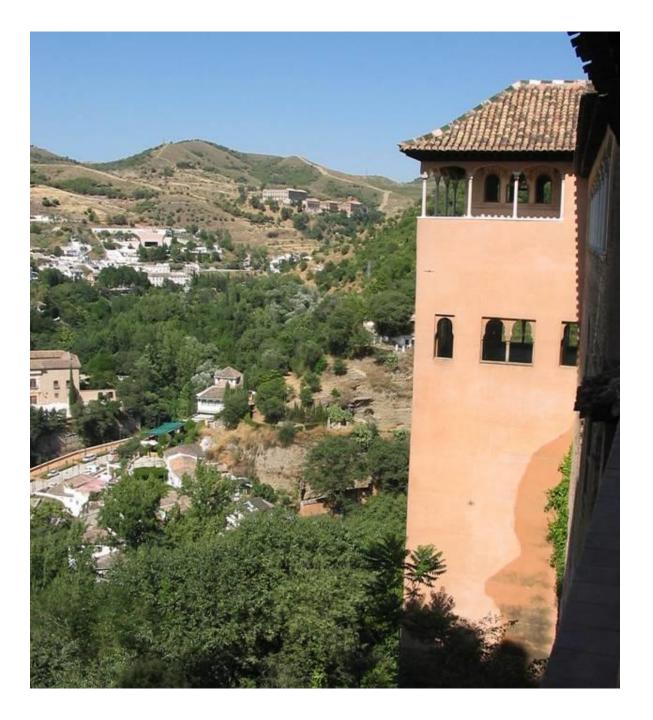
The graph cut cost

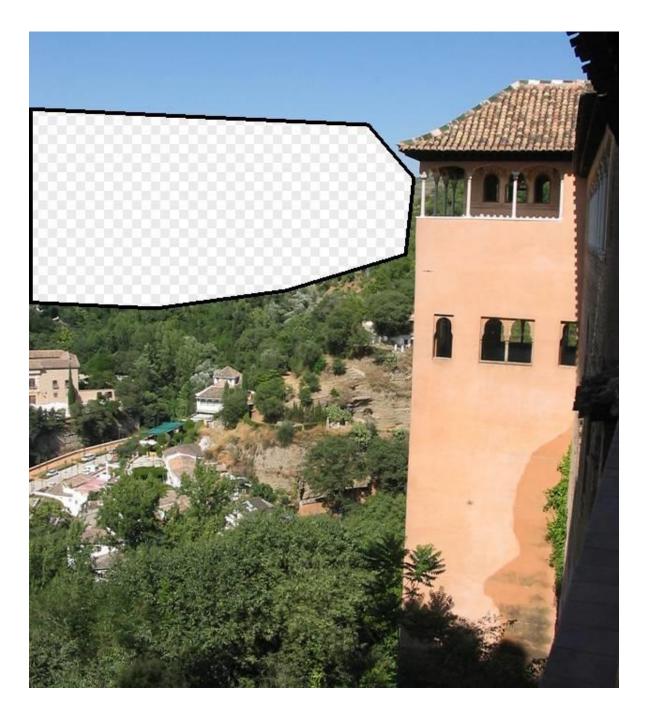


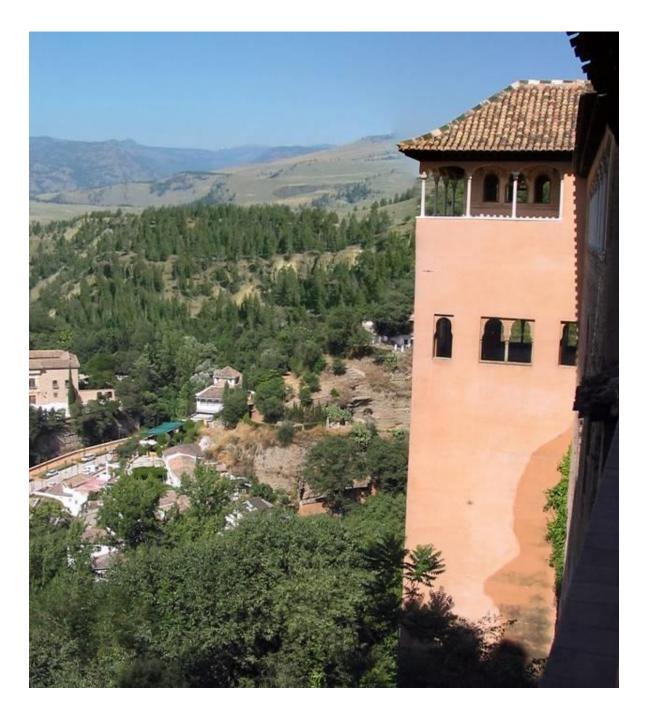




... 200 scene matches







Which is the original?



