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Goals

• Build a classifier which is more powerful at 
representing complex functions and more suited to 
the learning problem.

What does this mean?

1. Assume that the underlying data generating 
function relies on a composition of factors.

2. Learn a feature representation that is specific to 
the dataset.



Neural Networks

• Basic building block for composition is a 
perceptron (Rosenblatt c.1960)

• Linear classifier – vector of weights w and a ‘bias’ b

𝒘 = (𝑤1, 𝑤2, 𝑤3)
𝒃 = 0.3

Output (binary)

𝑥1

𝑥2

𝑥3



Composition

Layers that are in between the input and the output are 
called hidden layers, because we are going to learn their 
weights via an optimization process.

Hidden 
Layer 1

Hidden 
Layer 2

Nielson



Rectified Linear Unit

• ReLU





Interpretation of many layers







Mark 1 Perceptron
c.1960

20x20 pixel 
camera feed

Wikipedia



Does anyone pass along the weight unthresholded?
I.E., a real output instead of binary?

No – this is linear chaining.

Output vector
Input
vector



Does anyone pass along the weight unthresholded?
I.E., a real output instead of binary?

No – this is linear chaining.
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What is the relationship between SVMs and perceptrons?

-SVMs attempt to learn the support vectors which 
maximize the margin between classes.



What is the relationship between SVMs and perceptrons?

-SVMs attempt to learn the support vectors which 
maximize the margin between classes.

- A perceptron does not.
E.G., both of these perceptron
classifiers are equivalent.

- ‘Perceptron of optimal 
stability’ is used in SVM.



What is the relationship between SVMs and perceptrons?

-SVMs apply the kernel trick to compute distances via 
the dot product in a higher-dimensional space.

- A perceptron does not.

- Perceptron + optimal stability + kernel trick 
= foundations of SVM



Training Neural Networks
Learning the weight matrices W



Gradient descent

x
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General approach

Pick random starting point.

𝑎1 x

f(x)



General approach

Compute gradient at point (analytically or by finite differences)

𝛻 𝑓(𝑎1)

x

f(x)

𝑎1



General approach

Move along parameter space in direction of negative gradient

𝑎2 = 𝑎1 − 𝛾𝛻 𝑓 𝑎1

x

f(x)

𝑎1 𝑎2

𝛾 = amount to move
= learning rate



General approach

Move along parameter space in direction of negative gradient.

𝑎3 = 𝑎2 − 𝛾𝛻 𝑓 𝑎2

x

f(x)

𝑎1 𝑎2

𝛾 = amount to move
= learning rate

𝑎3



General approach

Stop when we don’t move any more.

𝑎𝑠𝑡𝑜𝑝:

𝑎𝑛−1 − 𝛾𝛻 𝑓 𝑎𝑛−1 = 0

x

f(x)

𝑎1 𝑎2𝑎3 𝑎𝑠𝑡𝑜𝑝



Gradient descent

• Optimizer for functions.

• Guaranteed to find optimum for convex functions.
• Non-convex = find local optimum.

• Works for multi-variate functions.
• Need to compute matrix of partial derivatives (“Jacobian”)



Train NN with Gradient Descent

• 𝑥𝑖 , 𝑦𝑖 = n training examples

• 𝑓 𝒙 = feed forward neural network

• L( x, y; θ) = some loss function

• Loss function measures how ‘good’ our network is 
at classifying the training examples wrt. the 
parameters of the model (the perceptron weights).

෍



Train NN with Gradient Descent

Model parameters
(perceptron weights)

𝑎1 𝑎2𝑎3 𝑎𝑠𝑡𝑜𝑝

Loss function
(Evaluate NN
on training data)



utput



What is an appropriate loss?

• Compare training class to output class

• Zero-one loss (per class)

• Is it good?



What is an appropriate loss?

• Compare training class to output class

• Zero-one loss (per class)

• Is it good?
• Nope – it’s a step function.

• I need to compute the gradient of the loss.

• This loss is not differentiable, and ‘flips’ easily.



But we have binary outputs

• Special function on last layer for classification

• ‘Softmax’:
• "squashes" a K-dimensional vector z of arbitrary real 

values to a K-dimensional vector σ ( z ) of real values in 
the range (0, 1) that add up to 1.

• I.E., turns the output into a 
probability distribution on classes.



utput

Softmax

Softmax



Cross-entropy loss function

• Negative log-likelihood

• Is it a good loss?
• Differentiable

• Cost decreases as 
probability increases

𝐿 𝒙, 𝑦; 𝜽 = −෍

𝑗

𝑦𝑗 log 𝑝(𝑐𝑗|𝒙)



utput

Softmax
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But the ReLU is not differentiable at 0!

Right. Fudge!

- ‘0’ is the best place for this to occur, because we 
don’t care about the result (it is no activation).

- ‘Dead’ perceptrons

- ReLU has unbounded positive response:
- Faster convergence

- But can cause your gradient response to ‘explode’.







Stochastic Gradient Descent

• Dataset can be too large to strictly apply gradient 
descent

• Instead, randomly sample a data point, perform 
gradient descent per point, and iterate.
• True gradient is approximated only
• Picking a subset of points: “mini-batch”

Pick starting 𝑊 and learning rate 𝛾

While not at minimum:
• Shuffle training set
• For each data point i=1…n  (maybe as mini-batch)

• Gradient descent
“Epoch“



Stochastic Gradient Descent

Loss will not always 
decrease (locally) as 
training data point is 
random.

Still converges over 
time.

Wikipedia



Gradient descent oscillations

Wikipedia



Gradient descent oscillations

Slow to 
converge to 
the (local) 
optimum

Wikipedia



Momentum

• Adjust the gradient by a weighted sum of the 
previous amount plus the current amount.

• Without momentum:     𝜽𝑡+1 = 𝜽𝑡 − 𝛾
𝜕𝐿

𝜕𝜽

• With momentum (new 𝛼 parameter): 

𝜽𝑡+1 = 𝜽𝑡 − 𝛾 𝛼
𝜕𝐿

𝜕𝜽 𝑡−1
+

𝜕𝐿

𝜕𝜽 𝑡



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Deep learning is: 
- a black box 

ClassifierTraining data



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Deep learning is: 
- a black box 
- also a black art.

http://www.isrtv.com/



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Many approaches and hyperparameters: 

Activation functions, learning rate, mini-batch size, 
momentum…

Often these need tweaking, and you need to know 
what they do to change them intelligently.



Nailing hyperparameters + trade-offs



Lowering the learning rate = 
smaller steps in SGD

-Less ‘ping pong’

-Takes longer to get 
to the optimum

Wikipedia



Universality

• A single-layer network can learn any function:
• So long as it is differentiable

• To some approximation;
More perceptrons = a better approximation

• Visual proof (Michael Nielson):

http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html


If a single-layer network can learn 
any function…

• …given enough parameters…

• …then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow 
networks at learning such hierarchies of knowledge.



On Wednesday

• Convolutional Neural Networks

• Regularization


