2 S
§:_>/2:\;\;®(@ SEVYE %’J;@
”?}-:DBOTIF’ %‘23030_?
212oRAAL % T’:/;//éCSC_L /%‘\

PASTMOLE £14508

£§§§§?§g@ gg%%%gggﬁ

A e
2y t\ PO/

IS IS
N = INSS

1950 2017 MWF 1prM 368
FUTURE VISION COMPUTER VISION

TN

W
Wiy

b

2
<+
&

=

Getty

»

ol

sk s

gy

Yy

Goals

 Build a classifier which is more powerful at
representing complex functions and more suited to
the learning problem.

What does this mean?

1. Assume that the underlying data generating
function relies on a composition of factors.

2. Learn a feature representation that is specific to
the dataset.

Neural Networks

* Basic building block for composition is a
perceptron (Rosenblatt c.1960)

* Linear classifier — vector of weights w and a ‘bias’ b

W = (W1;W2;W3)
X
1 b=03
Xy % Output (binary)
X3 /

0 ifw-2z4+5<0
output = - w-Tr = . WST 5,
P { ifw-z+b>0 2.5 3%

Composition

Hidden Hidden
Layer 1 Layer 2

output

Layers that are in between the input and the output are
called hidden layers, because we are going to learn their
weights via an optimization process.

Nielson

Rectified Linear Unit

*RelU f(z) = max(0,x).

1.0 -
0.8
0.6
0.4
0.2

0.0

X

hl

Neural Networks: example

Input
1-st layer hidden units

h* 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).

7
Ranzaton

Interpretation of many layers

[0010000100110010...]truckfeature

?

Exponentially more efficient than a
1-o0f-N representation (a la k-means)

14
F{anzaton

Interpretation

[1100010100001101] motorbike

001000010011 0010...] tuck

AN

15
Ranzaton

Interpretation

prediction of class

high-level

parts
| = distributed representations
mid-level |
s feature sharing
parts f .
» compositionality
low level
parts
Input image Pt e

e

T el 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton

Mark 1 Perceptron
c.1960

4=

20x20 pixel
camera feed

i
3
R
j
a
l.
i
| S
<1
{ 1

\ R AT RRg e em DT

Wikipedia

Does anyone pass along the weight unthresholded?
I.E., a real output instead of binary?

No — this is linear chaining.

Input

Output vector
vector

Does anyone pass along the weight unthresholded?
I.E., a real output instead of binary?

No — this is linear chaining.

Input

Output vector
vector

What is the relationship between SVMs and perceptrons?

-SVMs attempt to learn the support vectors which
maximize the margin between classes.

5

4
3
2
1
0
1
2
3

What is the relationship between SVMs and perceptrons?

-SVMs attempt to learn the support vectors which
maximize the margin between classes.

5

- A perceptron does not.
E.G., both of these perceptron
classifiers are equivalent.

- ‘Perceptron of optimal
stability’ is used in SVM.

| | | |
| =y w Y] [o (= (8] w -9

What is the relationship between SVMs and perceptrons?

-SVMs apply the kernel trick to compute distances via
the dot product in a higher-dimensional space.

- A perceptron does not.

- Perceptron + optimal stability + kernel trick
= foundations of SVM

Training Neural Networks

Gradient descent

fix)

General approach

Pick random starting point.

fix)

General approach

Compute gradient at point (analytically or by finite differences)

fx)
. V/f(a)

General approach

Move along parameter space in direction of negative gradient

fix)

y = amount to move
= learning rate

v

General approach

Move along parameter space in direction of negative gradient.

fix)

y = amount to move
= learning rate

General approach

Stop when we don’t move any more.

fix)

Astop-
an—1— YV f(an_1) =0

a, apas Astop X

Gradient descent

e Optimizer for functions.

* Guaranteed to find optimum for convex functions.
* Non-convex = find local optimum.

* Works for multi-variate functions.
* Need to compute matrix of partial derivatives (“Jacobian”)

Train NN with Gradient Descent

. xi,yi = n training examples
* f(x) = feed forward neural network
* L(x,y; 0) =some loss function

* [0ss function measures how ‘good’ our network is
at classifying the training examples wrt. the
parameters of the model (the perceptron weights).

Train NN with Gradient Descent

Loss function N
(Evaluate NN
on training data)

1 \ >

a; a,as Astop Model parameters
(perceptron weights)

How Good is a Network?

What is an appropriate loss?

 Compare training class to output class
e Zero-one loss (per class)

L(y,y) = I(y # v),

* |s it good?

What is an appropriate loss?

 Compare training class to output class
e Zero-one loss (per class)

L(y,y) = I(y # v),

* |s it good?
* Nope —it’s a step function.
* | need to compute the gradient of the loss.
* This loss is not differentiable, and ‘flips’ easily.

But we have binary outputs

 Special function on last layer for classification
* ‘Softmax’:

e "squashes" a K-dimensional vector z of arbitrary real
values to a K-dimensional vector o (z) of real values in
the range (0, 1) that add up to 1.

* |.E., turns the output into a
probability distribution on classes.

p(ck:Hx): C

How Good is a Network?

Softmax

Cross-entropy loss function

* Negative log-likelihood

L(x,y:0) = -) y;logp(c;lx)
J

5

* Is it a good loss? "l
* Differentiable 81\
e Cost decreases as 25

probability increases

15T

0.5

U Il L Il L L L Il [- =
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

How Good is a Network?

Softmax

Probability of class k given input (softmax):

o

e
p(Ck — 1 |x) — C
2., ¢
j=1
(Per-sample) Loss; e.g., negative log-likelihood (good for classification
of small number of classes):

L(xayfe):_zj yflogp(CJ"x) Ranzaltgon

k

TN

W
Wiy

b

2
<+
&

=

Getty

»

ol

sk s

gy

Yy

Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0~ =arg min, anl L(x",y",0)

Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0~ =arg min, anl L(x",y";0)

Question: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure
to compute gradients of the loss w.r.t. parameters in a multi-layer
neural network.

19

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986

Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y;0\W"

i j?

W, +e)

Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y; 0\ W:,J.+e)

i Jj?

Then, update:
W:,J.<—Wf,j+e sgn(L(x,y:0)—L(x,y;0\W'

i, J?

W, +e))

Ranzaton

Derivative w.r.t. Input of Softmax

ple=1lx)= Z =

1 k C
L(x,y;@):—zj_yjlogp(cj|x) y=[00..010..0]|

By substituting the fist formula in the second, and taking the
derivative w.rt. 0 we get:

0L

6_0: p(ch)—y

21
Ranzaton

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

0L 9L do 0L 8L do

ow® 0o oW’ oh> 00 on

22

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the

Jacobian of each module, we have:

0L oL do 0L 0L 0o
ow® 0o oW’ oh> 00 on
oL oL
= (plc|x)—y) b =W (plex)—y)=

oW’ oh’

Backward Propagation

oL
oh’

oL 0L on’ oL oL ol

ow® on® ow? oh' ohn’ on'

Given

we can compuie now:

24
Ranzaton

Backward Propagation

oL
oh'

0L OL Oh'
ow' on ow'

Given

we can compuie now:

25
Ranzaton

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

But the RelU is not differentiable at 0!

Right. Fudge!

- ‘0’ is the best place for this to occur, because we
don’t care about the result (it is no activation).

- ‘Dead’ perceptrons

- ReLU has unbounded positive response:
- Faster convergence
- But can cause your gradient response to ‘explode’.

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).

Note: FPROP and BPROP are dual of each other. E.g.,:

FPROP BPROP
= <=1
- | I
w 1
- ==

COPY
A

26
. f
N Ranzato

Toy Code (Matlab): Neural Net Trainer

for i = 1 : nr layers - 1
[h{i} Jac{i}] = nonlinearity(W{i} * h{i-1} + b{il});
end
h{nr_ layers-1} = W{nr_layers-1} * h{nr layers-2} + b{nr layers-1};
prediction = softmax(h{l-11});
loss = - sum(sum(log(prediction) .* target)) / batch_size;
dh{l-1} = prediction - target;
for i = nr layers — 1 : -1 : 1
Wgrad{i} = dh{i} * h{i-1}";
bgrad{i} = sum(dh{i}, 2);
dh{i-1} = (W{i}' * dh{i}) .* Jac{i-1};
end
for i = 1 : nr layers - 1
W{i} = W{i} - (lr / batch_size) * Wgrad{i};
b{i} = b{i} - (lr / batch_size) * bgrad{i};
end

28
Ranzaton

Stochastic Gradient Descent

» Dataset can be too large to strictly apply gradient
descent

* Instead, randomly sample a data point, perform
gradient descent per point, and iterate.

* True gradient is approximated only
* Picking a subset of points: “mini-batch”

Pick starting W and learning rate y
While not at minimum:

e Gradient descent

e Shuffle training set
* For each data point i=1...n (maybe as mini-batch) } “Epoch”

Stochastic Gradient Descent

Loss will not always
decrease (locally) as
training data point is

(
o

random.
Still converges over
time.

I 1 I I I 1
1] SO0 1000 1500 2000 2500 3000 3500

Wikipedia

Gradient descent oscillations

Wikipedia

Gradient descent oscillations

Slow to
converge to
the (local)
optimum

Wikipedia

Momentum

e Adjust the gradient by a weighted sum of the
previous amount plus the current amount.

L

_ 9
* Without momentum: 0;,, = 0, —)/69

* With momentum (new a parameter):

011 = Bt_y([ae]t 1+[])

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box

Training data Classifier

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box
- also a black art.

http://www.isrtv.com/

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Many approaches and hyperparameters:

Activation functions, learning rate, mini-batch size,
momentum...

Often these need tweaking, and you need to know
what they do to change them intelligently.

Nailing hyperparameters + trade-offs

agokasla .54 pn
uploaded and commented on this image: image.png ~

WOOT! Nailed the hyperparameters. 4 generator updates per discriminator update. Wait extra long before you
initiate the switch.

jamestompkin «.:
Well done - | wonder if we can turn hyperparameter nailing into the next e-5port?

agokasla 4

. | am starting to think that the numeric instability of the model is starting to become a real issue. Lowering the
learning rate could make it more stable, but it would require lowering it by two orders of magnitude which would
make it take 100x longer to train right? =

Lowering the learning rate =
smaller steps in SGD

-Less ‘ping pong’

-Takes longer to get
to the optimum

Wikipedia

Universality

* A single-layer network can learn any function:
* So long as it is differentiable

* To some approximation;
More perceptrons = a better approximation

* Visual proof (Michael Nielson):
http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

If a single-layer network can learn
any function...

e ...given enough parameters...
e ...then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow
networks at learning such hierarchies of knowledge.

On Wednesday

 Convolutional Neural Networks

* Regularization

