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Simultaneous contrast










Convolutional Layer

0 fw-z4+5b<0
1 ifw-z4+b>0
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Convolutional Layer
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Convolutional Layer

Learn multiple filters.

Filter = ‘local’ perceptron.
g\ Also called kernel.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
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Pooling Layer

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.
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Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

Krizhevsky et al. “lmageNet Classification w'.t'HpéJéep CNNs” NIPS 2012

category
prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

Total nr. flops: 832M

4M

16M
37M

74M

224M
149M

223M

105M

96
Ranzaton




Universality

* A single-layer network can learn any function:
* So long as it is differentiable

* To some approximation;
More perceptrons = a better approximation

e Visual proof (Michael Nielson):

http://neuralnetworksanddeeplearning.com/chap4.html



http://neuralnetworksanddeeplearning.com/chap4.html

If a single-layer network can learn
any function...

e ...given enough parameters...
e ...then why do we go deeper?

Intuitively, composition is efficient because it allows
reuse.

Empirically, deep networks do a better job than shallow
networks at learning such hierarchies of knowledge.



Problem of fitting

* Too many parameters = overfitting
* Not enough parameters = underfitting

* More data = less chance to overfit

* How do we know what is required?



Regularization

* Attempt to guide solution to not overfit
e But still give freedom with many parameters



Data fitting problem
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nich is better?
nich is better a priori?
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Regularization

* Attempt to guide solution to not overfit
e But still give freedom with many parameters

* |dea: Penalize the use of parameters to prefer small
weights.



Regularization:

* |dea: add a cost to having high weights
e A = regularization parameter

A 2
C:CHEZW:WT

[Nielson]



Both can describe the data...

e ...but one is simpler.

* Occam’s razor:
“Among competing hypotheses, the one with the fewest
assumptions should be selected”

For us:
Large weights cause large changes in behaviour in
response to small changes in the input.

Simpler models (or smaller changes) are more robust
to noise.



Regularization

* |dea: add a cost to having high weights
e A = regularization parameter

A 2
C:Cﬂ—l—ﬁ;w,

Normal cross-entropy Regularization term

loss (binary classes) [Nielson]
|



Regularization: Dropout

* Our networks typically start with random weights.
* Every time we train = slightly different outcome.

* Why random weights?

* If weights are all equal,
response across filters
will be equivalent.

e Network doesn’t train.

mputs < KA

[Nielson]



Regularization

* Our networks typically start with random weights.
* Every time we train = slightly different outcome.

* Why not train 5 different networks with random
starts and vote on their outcome?
* Works fine!
* Helps generalization because error is averaged.



Regularization: Dropout

[Nielson]



Regularization: Dropout

At each mini-batch:

Randomly select a subset of neurons.
lgnore them.

On test: half weights outgoing to
compensate for training on half neurons.

Effect:

Neurons become less dependent on
output of connected neurons.
Forces network to learn more robust
features that are useful to more
subsets of neurons.

Like averaging over many different
trained networks with different
random initializations.

Except cheaper to train.

[Nielson]



More regularization

* Adding more data is a kind of regularization
* Pooling is a kind of regularization
* Data augmentation is a kind of regularization



CNNs for Medical Imaging -
Connectomics

[Patric
Hagmann]



Vision for understanding the brain

e 1Imm cubed of brain

30 um
5210 pixels 30 pm
e 5210 pixels

* Image at 5-30
nanometers

e How much data?

1000 sections

EM images Reconstruction

[Kaynig-Fittkau et al.]



Vision for understanding the brain

1mm cubed of brain
30 pm

. 30
5210 pljtew“,' 521‘:)";“&'5 o Image at 5-30 nanometers

How much data?

000 sections * 1 Peta byte -
1,000,000,000,000,000
EM images Reconstruction ~ A” phOtOS uploaded tO
Facebook per day

[Kaynig-Fittkau et al.]



Membrane-
classification

EM images Membrane Multiple segmentations
probabilities per section

Proof-
reading

Segmentation
fusion

Three dimensional Identified neuronal
reconstruction processes

[Kaynig-Fittkau et al.]



Vision for understanding the brain

Hanzatnn



Membrane-
classification

Region -
segmentatio

Membrane Multiple segmentations
probabilities per section

Proof-
reading

Segmentation
fusion

Three dimensional Identified neuronal
reconstruction processes

[Kaynig-Fittkau et al.]



Initial Merge- and Split Correct Fixed
Segmentation Errors Borders Segmentation

[Haehn et al.]
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Network Architecture

AXT5XTH GAX73X73 64x36%36 48x34x34 48x17x17 48x15x15 A48XTXT 48x5x5 48x2x2
3x3pF 2x2F 3x3p 2x2F 3x3p 2x2F 3x3p 2x2F
™ m
Input Convolution Pooling  Convolution Pooling Convolution Pooling Convolution Pooling
(Max) (Max) (Max) (Max)
Dropout Dropout Dropout Dropout
p=.2 p=.2 p=.2 p=.2

512

Dense
RelLU
Dropout

p=.5

1: Split Error
0: Correct

Dense
Softmax

[Haehn et al.]
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[Haehn et al.]



True Positive Rate
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Guided Proofreading: AC4
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[Haehn et al.]



