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[Boston March for Science 2017 — photo Hendrik Strobelt]



[Boston March for Science 2017]
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Interpretation

prediction of class

high-level

parts
| = distributed representations
mid-level |
s feature sharing
parts f .
» compositionality
low level
parts
Input image Pt e

e

T el 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton




Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, AntonioTorralba

Massachusetts Institute of Technology

ICLR 2015



How ODbjects are Represented in CNN?

CNN uses distributed code to represent objects.

Convl
ilhll!ll&l:“l-\lix\l lEENINZANNAZ SSlZAl SNz eI EN I EZEI AT A I s

Agrawal, et al. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014
Szegedy, et al. Intriguing properties of neural networks.arXiv preprint arXiv:1312.6199, 2013.
Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.



Estimating the Receptive Fields

Estimated receptive fields Actual size of RF is much smaller than the theoretic size
pooll conv3 pool5

\
e

Segmentation using the RF of Units
oI1 pool2
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Annotating the Semantics of Units

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

Task 2

Mark (by clicking on them) the images which don’t correspon

ask 1
Word/Short description:
ower
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Task 3

IWhich calegory does your short description mostly belong lo?
Scene (kitchen, corridor, street, beach, ...)

Reglon or surtace (road, grass, wall, floor, sky, ...)
@Ob}ecl (bed, car, building, tree, ...)
Object part (leg, head, wheel, roof, )

Texture or material (striped, rugged, wooden, plastic, ...)

: Simple elements or colors (vertical line, curved line, color blue, ...)



Annotating the Semantics of Units

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%
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Annotating the Semantics of Units

Pool5, unit 13; Label: Lamps; Type: : 84%
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Annotating the Semantics of Units




Annotating the Semantics of Units

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%
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Annotating the Semantics of Units

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%
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Distribution of Semantic Types at Each Layer

—@— places-CNN
@ imagenet-CNN
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Distribution of Semantic Types at Each Layer
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Object detectors emerge within CNN trained to

classify scenes, without any object supervision!
: 4 .....
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ConvNets perform classification

< 1 millisecond

“tabby cat”

1000-dim vector

< end-to-end learning

18

[Slides from Long, Shelhamer, and Darrell]



CONV NETS: EXAMPLES

- Object detection

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatol 3




ConvNets: Test

At test time, run only is forward mode (FPROP).

8x18

24@6x6 Fully

connected
500 weights)

1Q0
2@96x96

33 6x6
. : 3x?
subsampling convolution convolution

96 k Is subsamplin
(96 kernels) P13400 kernels)

5x5
convolution
(16 kernels)




ConvNets: Test

At test time, run only is forward mode (FPROP).

8x18

Fully
100 connected
500 weights)

24 @6Xx6

2@96x96

E 4
6x6

5x5 v

ey - luti 3x3
convolution subsampling C;)g\: " 1:)n b i convolution
' ernels subsampliin
(16 kernels) ( ) (%400 kernels)

Naturally, convnet can process larger images

Traditional methods
use inefficient sliding
windows.

76
Ranzaton




ConvNets: Test

At test time, run only is forward mode (FPROP).

8x18

Fully
100 connected
500 weights)

24 @6Xx6

2@96x96

E
6x6

5x5 v

i . luti 3x3
convolution subsampling C;)g\: " 1;)n b i convolution
' ernels subsamplin
(16 kernels) ( ) (%400 kernels)

Naturally, convnet can process larger images

Traditional methods
use inefficient sliding
windows.
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ConvNets: Test

At test time, run only is forward mode (FPROP).

D 8x18

24@6x6 bally

100 connected
500 weights)

2@96x96

E
6x6

5x5 v

T : luti 3x3
convolution subsampling C;)g\: " 1;)n b i convolution
' ernels subsamplin
(16 kernels) ( ) (%400 kernels)

Naturally, convnet can process larger images

Traditional methods
use inefficient sliding
windows.
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ConvNets: Test

At test time, run only is forward mode (FPROP).

D 8x18

24@6x6 bally

100 connected
500 weights)

2@96x96

E
6x6

5x5 v

T : luti 3x3
convolution subsampling C;)g\: " 1;)n b i convolution
' ernels subsamplin
(16 kernels) ( ) (%400 kernels)

Naturally, convnet can process larger images

Traditional methods
use inefficient sliding
windows.

79
Ranzaton




R-CNN does detection

many seconds

R-CNN

lldog”

llcatll

26

[Long et al.]



R-CNN: Region-based CNN

=T warped region 57 acroplane? no.
<k = IR Bt 5 :
T g ; ,
- = ]m' = . [ =& person? yes.
= B CNN\ :
N - S q[tvmonitm".’ no.
2. Extract region 3. Compute 4. Classify
proposals (~2k) CNN features regions

Figure: Girshick et al.



Fast R-CNN

Rol = Region of Interest

Figure: Girshick et al.

projectio\n\\

Rol
pooling

Conv  X|
feature map

layer lD DFCDS

Multi-task loss

Outputs: bb OX
softmax regressor
(=S fopecs.isssee e sv]

4

2 FC ]

Rol feature
vector

For each Rol



Fast R-CNN

. Outputs: bbox
<ep softmax regressor
- |ConvNet e

Rol EIFC  EIFC
pooling

_ == layer lD DFCDS
A |- projection\\'

Conv =L Rol feature
feature map vector

For each Rol

- Convolve whole image into feature map (many layers; abstracted)
- For each candidate Rol:
- Squash feature map weights into fixed-size ‘Rol pool’ — adaptive subsampling!
- Divide Rol into H x W subwindows, e.g., 7 x 7, and max pool
- Learn classification on Rol pool with own fully connected layers (FCs)
- Output classification (softmax) + bounds (regressor)

Figure: Girshick et al.



What if we want pixels out?

monocular depth estimation Eigen & Fergus 2015

semantic Ae®

segmentation

convolutional
networlk

optical flow Fischer et al. 2015 boundary prediction Xie & Tu 2015 30

[Long et al.]



~1/10 second

< end-to-end learning

31

[Long et al.]



Fully Convolutional Networks
for Semantic Segmentation

forward /inference

<€

/ backward /learning

P

bggﬁ 21

oo

V=

Jonathan Long® Evan Shelhamer* Trevor Darrell
UC Berkeley 32

[CVPR 2015] Slides from Long, Shelhamer, and Darrell



A classification network...

convolution fully connected

Number of perceptrons in MLP layer, e.g., 1024

Number of filters, e.g., 64
DD /// -

227 x 227 55 x 55 27 x 27 13 x13

33

[Long et al.]



A classification network...

convolution fully connected
a D D /// abby cat
227 x 227 55x 55 27 x 27 13 x13

34

[Long et al.]



A classification network...

convolution fully connected
& & g/// “tabby cat”
227 x 227 55x 55 27 x 27 13 x13

The response of every kernel across all positions are attached
densely to the array of perceptrons in the fully-connected layer.

35

[Long et al.]



A classification network...

’,
w

227 x 227

convolution fully connected

& & g/// “tabby cat”

55 x 55 27 x 27 13 x13

The response of every kernel across all positions are attached

densely to the array of perceptrons in the fully-connected layer.

36
AlexNet: 256 filters over 6x6 response map

Each 2,359,296 response is attached to one of 4096 perceptrons,

leading to 37 mil params.
[Long et al.]



Problem

* We want a label at every pixel

* Current network gives us a label for the whole
Image.

e We want a matrix of labels

* Approach:
 Make CNN for sub-image size

e ‘Convolutionalize’ all layers of network, so that we can
treat it as one (complex) filter and slide around our full
Image.



“tabby cat”

606 O
% o S L0 ‘ |

\

convolutionalization

tabby cat heatmap

(%) g6 QO
ZK &l 6b«ggb¢0 A0
el )2

o0
Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding

layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

Long, Shelhamer, and Darrell 2014



A classification network...

’,
w

227 x 227

convolution fully connected

& & g/// “tabby cat”

55 x 55 27 x 27 13 x13

The response of every kernel across all positions are attached

densely to the array of perceptrons in the fully-connected layer.

39
AlexNet: 256 filters over 6x6 response map

Each 2,359,296 response is attached to one of 4096 perceptrons,

leading to 37 mil params.
[Long et al.]



Yann LeCun
6 April 2015 -

i N Follow
In Convolutional Nets, there is no such thing as "fully-connected layers".

There are only convolution layers with 1x1 convolution kernels and a full
connection table.




Convolutionalization

convolution

Number of filters
Number of fllters

227 x 227 55 x 55

&4@ -

27 x 27 13 x13 1x1

1x1 convolution operates across
all filters in the previous layer,
and is slid across all positions.

42

[Long et al.]



Back to the fully-connected
perceptron... output:{” ifw.-o <0

ifw-x >0

w-T = ijj$j,

Perceptron is connected to every

value in the previous layer
O (across all channels; 1 visible).

[Long et al.]



Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton




Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 1x1
100 parameters

54
Ranzaton




Convolutionalization

convolution

# filters, e.g. 1024

227 x 227 55 x 55 27 x 27 13 x13 1x1

1x1 convolution operates across
all filters in the previous layer,
and is slid across all positions.
46
e.g., 64x1x1 kernel, with shared
weights over 13x13 output,

x1024 filters = 11mil params.
[Long et al.]



Becoming fully convolutional

convolution
////Mult'pe outputs
Hx W H/4 x W4 HI8 x W/8 H/16 x W/16 H/32 x W/32
\ J
|
Arbitrary- When we turn these operations into a convolution,
sized image the 13x13 just becomes another parameter and

our output size adjust dynamically.
47

Now we have a vector/matrix output, and our
network acts itself like a complex filter.
[Long et al.]



“tabby cat”

606 O
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convolutionalization

tabby cat heatmap
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Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding

layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

Long, Shelhamer, and Darrell 2014



Upsampling the output

convolution
HxW H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 Hx W

Some upsampling
algorithm to
returnusto Hx W

49

[Long et al.]



End-to-end, pixels-to-pixels network

convolution
HxW H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 Hx W

50

[Long et al.]



End-to-end, pixels-to-pixels network

convolution
H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 T Hx W
T upsampling T
conv, pool, pixelwise
nonlinearity output + loss

51

[Long et al.]



What is the upsampling layer?

This one.

forward /inference

<€

/ backward /learning

ngﬁ bggﬁ 21

LA™ ap* 450

Hint: it’s actually an upsampling _network_ 52

[Long et al.]



Upsampling with convolution

Convolution Transposed convolution =
weighted kernel ‘stamp’

Often called “deconvolution”,

but not actually the deconvolution
that we previously saw in deblurring ->
that is division in the Fourier domain.



Spectrum of deep features

Combine where (local, shallow) with what (global, deep)

image intermediate layers

mll

!

Fuse features into deep jet

(cf. Hariharan et al. CVPR15 “hypercolumn”) 54

[Long et al.]



Learning upsampling kernels
with skip layer refinement

onvl pooll conv2 pool2 convy pool3 convd pool4 convo poold  conv6-7

)
interp + sum
2x conv7
poold </
.
© ™)
o N
%
S
/ 49}@ interp + sum
L. ) /Csj/ 4x conv’7
End-to-end, joint learning 2% poold [ | ]
of semantics and location pool3 [ [ ]

dense output 55

[Long et al.]



Skip layer refinement

input image stride 32 stride 16 stride 8 ground truth

no skips 1 skip

56

[Long et al.]



Relative to prior state-of-the-art
SDS:

- 30% relative improvement
for mean loU

- 286X faster

*Simultaneous Detection and Segmentation
Hariharan et al. ECCV14 58

[Long et al.]



forward /inference

backward /learning &%

/|: 1
A g &Qgﬁ)&ggb 21

21

What can we do with an FCN?

Long, Shelhamer, and Darrell 2014



How much can an image tell about its
geographic location?

6 million geo-tagged Flickr images

http://graphics.cs.cmu.edu/projects/im2qps/

im2gps (Hays & Efros, CVPR 2008)


http://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
http://graphics.cs.cmu.edu/projects/im2gps/

Nearest Neighbors according to gist + bag of SIFT + color histogram + a few others

i

Pans ]







PlaNet - Photo Geolocation with
Convolutional Neural Networks

Tobias Weyand, llya Kostrikov, James Philbin

ECCV 2016



Discretization of Globe
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Figure 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Right: Detail views of Great Britain and Ireland and the San




Network and Training

* Network Architecture: Inception with 97M
parameters

e 26,263 “categories” — places in the world

e 126 Million Web photos
e 2.5 months of training on 200 CPU cores
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PlaNet vs im2gps (2008, 2009)

Street City Region Country Continent
Method 1km 25km 200km 750 km 2500 km
Im2GPS (orig) [17] 20% 15.0% 23.0%  47.0%
Im2GPS (new) [18] 2.5% 21.9% 32.1%  354%  51.9%
PlaNet 84% 24.5% 37.6% 53.6%  71.3%

Manmade Natural City Natural
Method Landmark Landmark Scene Scene Animal

Im2GPS (new) 61.1 374 3375.3 5701.3 6528.0
PlaNet 74.5 61.0 212.6 1803.3 1400.0




Spatial support for decision




PlaNet vs Humans




PlaNet vs. Humans
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PlaNet summary

* Very fast geolocalization method by categorization.

* Uses far more training data than previous work
(im2gps)
* Better than humans!



