
SECOND INTERNATIONAL WORKSHOP ON STATISTICAL AND COMPUTATIONAL THEORIES OF

VISION – MODELING, LEARNING, COMPUTING, AND SAMPLING

VANCOUVER, CANADA, JULY 13, 2001.

Robust Real-time Object Detection

Paul Viola Michael Jones

viola@merl.com mjones@crl.dec.com

Mitsubishi Electric Research Labs Compaq CRL

201 Broadway, 8th FL One Cambridge Center

Cambridge, MA 02139 Cambridge, MA 02142

Abstract

This paper describes a visual object detection framework that is capable of processing images extremely

rapidly while achieving high detection rates. There are three key contributions. The first is the introduction

of a new image representation called the “Integral Image” which allows the features used by our detector

to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small

number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a

method for combining classifiers in a “cascade” which allows background regions of the image to be quickly

discarded while spending more computation on promising object-like regions. A set of experiments in the

domain of face detection are presented. The system yields face detection performace comparable to the best

previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15

frames per second.

1. Introduction

This paper brings together new algorithms and insights to construct a framework for robust and extremely

rapid object detection. This framework is demonstrated on, and in part motivated by, the task of face

detection. Toward this end we have constructed a frontal face detection system which achieves detection and

false positive rates which are equivalent to the best published results [18, 13, 16, 12, 1]. This face detection

system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.

Operating on 384 by 288 pixel images, faces are detected at 15 frames per second on a conventional 700

1

MHz Intel Pentium III. In other face detection systems, auxiliary information, such as image differences in

video sequences, or pixel color in color images, have been used to achieve high frame rates. Our system

achieves high frame rates working only with the information present in a single grey scale image. These

alternative sources of information can also be integrated with our system to achieve even higher frame rates.

There are three main contributions of our object detection framework. We will introduce each of these

ideas briefly below and then describe them in detail in subsequent sections.

The first contribution of this paper is a new image representation called an integral image that allows

for very fast feature evaluation. Motivated in part by the work of Papageorgiou et al. our detection system

does not work directly with image intensities [10]. Like these authors we use a set of features which are

reminiscent of Haar Basis functions (though we will also use related filters which are more complex than

Haar filters). In order to compute these features very rapidly at many scales we introduce the integral im-

age representation for images (the integral image is very similar to the summed area table used in computer

graphics [3] for texture mapping). The integral image can be computed from an image using a few opera-

tions per pixel. Once computed, any one of these Harr-like features can be computed at any scale or location

in constant time.

The second contribution of this paper is a method for constructing a classifier by selecting a small number

of important features using AdaBoost [6]. Within any image sub-window the total number of Harr-like

features is very large, far larger than the number of pixels. In order to ensure fast classification, the learning

process must exclude a large majority of the available features, and focus on a small set of critical features.

Motivated by the work of Tieu and Viola, feature selection is achieved through a simple modification of the

AdaBoost procedure: the weak learner is constrained so that each weak classifier returned can depend on

only a single feature [2]. As a result each stage of the boosting process, which selects a new weak classifier,

can be viewed as a feature selection process. AdaBoost provides an effective learning algorithm and strong

bounds on generalization performance [14, 9, 10].

The third major contribution of this paper is a method for combining successively more complex classi-

fiers in a cascade structure which dramatically increases the speed of the detector by focussing attention on

promising regions of the image. The notion behind focus of attention approaches is that it is often possible to

rapidly determine where in an image an object might occur [19, 8, 1]. More complex processing is reserved

only for these promising regions. The key measure of such an approach is the “false negative” rate of the

attentional process. It must be the case that all, or almost all, object instances are selected by the attentional

filter.

We will describe a process for training an extremely simple and efficient classifier which can be used as a

“supervised” focus of attention operator. The term supervised refers to the fact that the attentional operator

is trained to detect examples of a particular class. In the domain of face detection it is possible to achieve

fewer than 1% false negatives and 40% false positives using a classifier which can be evaluated in 20 simple

operations (approximately 60 microprocessor instructions). The effect of this filter is to reduce by over one

2

half the number of locations where the final detector must be evaluated.

Those sub-windows which are not rejected by the initial classifier are processed by a sequence of classi-

fiers, each slightly more complex than the last. If any classifier rejects the sub-window, no further processing

is performed. The structure of the cascaded detection process is essentially that of a degenerate decision tree,

and as such is related to the work of Amit and Geman [1].

The complete face detection cascade has 32 classifiers, which total over 80,000 operations. Nevertheless

the cascade structure results in extremely rapid average detection times. On a difficult dataset, containing

507 faces and 75 million sub-windows, faces are detected using an average of 270 microprocessor instruc-

tions per sub-window. In comparison, this system is about 15 times faster than an implementation of the

detection system constructed by Rowley et al.1 [13]

An extremely fast face detector will have broad practical applications. These include user interfaces, im-

age databases, and teleconferencing. This increase in speed will enable real-time face detection applications

on systems where they were previously infeasible. In applications where rapid frame-rates are not necessary,

our system will allow for significant additional post-processing and analysis. In addition our system can be

implemented on a wide range of small low power devices, including hand-helds and embedded processors.

In our lab we have implemented this face detector on the Compaq iPaq handheld and have achieved detec-

tion at two frames per second (this device has a low power 200 mips Strong Arm processor which lacks

floating point hardware).

1.1 Overview

The remaining sections of the paper will discuss the implementation of the detector, related theory, and

experiments. Section 2 will detail the form of the features as well as a new scheme for computing them

rapidly. Section 3 will discuss the method in which these features are combined to form a classifier. The

machine learning method used, a variant of AdaBoost, also acts as a feature selection mechanism. While

the classifiers that are constructed in this way have good computational and classification performance, they

are far too slow for a real-time classifier. Section 4 will describe a method for constructing a cascade of

classifiers which together yield an extremely reliable and efficient object detector. Section 5 will describe a

number of experimental results, including a detailed description of our experimental methodology. Finally

Section 6 contains a discussion of this system and its relationship to related systems.

1Henry Rowley very graciously supplied us with implementations of his detection system for direct comparison. Reported
results are against his fastest system. It is difficult to determine from the published literature, but the Rowley-Baluja-Kanade
detector is widely considered the fastest detection system and has been heavily tested on real-world problems.

3

��
��

���

���

���

���

���

���

	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

A B

C D

Figure 1: Example rectangle features shown relative to the enclosing detection window. The sum of the
pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles.
Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a
four-rectangle feature.

2 Features

Our object detection procedure classifies images based on the value of simple features. There are many

motivations for using features rather than the pixels directly. The most common reason is that features can

act to encode ad-hoc domain knowledge that is difficult to learn using a finite quantity of training data. For

this system there is also a second critical motivation for features: the feature-based system operates much

faster than a pixel-based system.

The simple features used are reminiscent of Haar basis functions which have been used by Papageorgiou

et al. [10]. More specifically, we use three kinds of features. The value of a two-rectangle feature is the

difference between the sum of the pixels within two rectangular regions. The regions have the same size and

shape and are horizontally or vertically adjacent (see Figure 1). A three-rectangle feature computes the sum

within two outside rectangles subtracted from the sum in a center rectangle. Finally a four-rectangle feature

computes the difference between diagonal pairs of rectangles.

Given that the base resolution of the detector is 24x24, the exhaustive set of rectangle features is quite

large, 45,396 . Note that unlike the Haar basis, the set of rectangle features is overcomplete2 .

2.1 Integral Image

Rectangle features can be computed very rapidly using an intermediate representation for the image which

we call the integral image.3 The integral image at location �
��� contains the sum of the pixels above and to

2A complete basis has no linear dependence between basis elements and has the same number of elements as the image space,
in this case 576. The full set of 45,396 thousand features is many times over-complete.

3There is a close relation to “summed area tables” as used in graphics [3]. We choose a different name here in order to emphasize
its use for the analysis of images, rather than for texture mapping.

4

��

��

(x,y)

Figure 2: The value of the integral image at point
� �
����� is the sum of all the pixels above and to the left.

the left of � ��� , inclusive: ��� � � �����
	 ���
������ ��
����
� � ��� ������� �

where

��� � � ����� is the integral image and

� � �
����� is the original image (see Figure 2). Using the following pair

of recurrences:

� � � ������	 � � � ����������� � � �
����� (1)� � � �
�����!	 ��� � �"��� �������#� � � ����� (2)

(where � � �
����� is the cumulative row sum, � � � �$�%���&	(' , and

� � � �%� �����)	(') the integral image can be

computed in one pass over the original image.

Using the integral image any rectangular sum can be computed in four array references (see Figure 3).

Clearly the difference between two rectangular sums can be computed in eight references. Since the two-

rectangle features defined above involve adjacent rectangular sums they can be computed in six array refer-

ences, eight in the case of the three-rectangle features, and nine for four-rectangle features.

One alternative motivation for the integral image comes from the “boxlets” work of Simard, et al. [17].

The authors point out that in the case of linear operations (e.g. *,+�-), any invertible linear operation can

be applied to * or - if its inverse is applied to the result. For example in the case of convolution, if the

derivative operator is applied both to the image and the kernel the result must then be double integrated:

*)./- 	102043 * � ./- �6587
The authors go on to show that convolution can be significantly accelerated if the derivatives of * and - are

5

A

C

B

D

1

4

2

3

Figure 3: The sum of the pixels within rectangle � can be computed with four array references. The value
of the integral image at location 1 is the sum of the pixels in rectangle � . The value at location 2 is � ��� ,
at location 3 is � ��� , and at location 4 is � ��� ��� � � . The sum within � can be computed as� � � � �	� ��
 � .
sparse (or can be made so). A similar insight is that an invertible linear operation can be applied to * if its

inverse is applied to - : 3 * � � 5 . � 0 0 -�
 	 *&./- 7
Viewed in this framework computation of the rectangle sum can be expressed as a dot product,

� +�� , where�
is the image and � is the box car image (with value 1 within the rectangle of interest and 0 outside). This

operation can be rewritten � +�� 	 � 0 0 � � +�� � � 7
The integral image is in fact the double integral of the image (first along rows and then along columns). The

second derivative of the rectangle (first in row and then in column) yields four delta functions at the corners

of the rectangle. Evaluation of the second dot product is accomplished with four array accesses.

2.2 Feature Discussion

Rectangle features are somewhat primitive when compared with alternatives such as steerable filters [5, 7].

Steerable filters, and their relatives, are excellent for the detailed analysis of boundaries, image compression,

and texture analysis. In contrast rectangle features, while sensitive to the presence of edges, bars, and

other simple image structure, are quite coarse. Unlike steerable filters the only orientations available are

vertical and horizontal. It appears as though the set of rectangle features do however provide a rich image

representation which supports effective learning. The extreme computational efficiency of rectangle features

provides ample compensation for their limited flexibility.

6

In order to appreciate the computational advantage of the integral image technique, consider a more

conventional approach in which a pyramid of images is computed. Like most object detection systems,

our detector scans the input at many scales; starting at the base scale in which objects are detected at a

size of 24x24 pixels, the image is scanned at 11 scales each a factor of 1.25 larger than the last. The

conventional approach is to compute a pyramid of 11 images, each 1.25 times smaller than the previous

image. A fixed scale detector is then scanned across each of these images. Computation of the pyramid,

while straightforward, requires significant time. Implemented on conventional hardware it is extremely

difficult to compute a pyramid at 15 frames per second4 .

In contrast we have defined a meaningful set of features, which have the property that a single feature

can be evaluated at any scale and location in a few operations. We will show in Section 4 that effective face

detectors can be constructed with as little as two rectangle features. Given the computational efficiency of

these features, the face detection process can be completed for an entire image at every scale at 15 frames

per second, less time than is required to evaluate the 11 level image pyramid alone. Any procedure which

requires a pyramid of this type will necessarily run slower than our detector.

3 Learning Classification Functions

Given a feature set and a training set of positive and negative images, any number of machine learning

approaches could be used to learn a classification function. Sung and Poggio use a mixture of Gaussian

model [18]. Rowley, Baluja, and Kanade use a small set of simple image features and a neural network [13].

Osuna, et al. used a support vector machine [9]. More recently Roth et al. have proposed a new and unusual

image representation and have used the Winnow learning procedure [12].

Recall that there are 45,396 rectangle features associated with each image sub-window, a number far

larger than the number of pixels. Even though each feature can be computed very efficiently, computing the

complete set is prohibitively expensive. Our hypothesis, which is borne out by experiment, is that a very

small number of these features can be combined to form an effective classifier. The main challenge is to find

these features.

In our system a variant of AdaBoost is used both to select the features and to train the classifier [6].

In its original form, the AdaBoost learning algorithm is used to boost the classification performance of

a simple learning algorithm (e.g., it might be used to boost the performance of a simple perceptron). It

does this by combining a collection of weak classification functions to form a stronger classifier. In the

language of boosting the simple learning algorithm is called a weak learner. So, for example the perceptron

learning algorithm searches over the set of possible perceptrons and returns the perceptron with the lowest

4The total number of pixels in the 11 level pyramid is about ���������	�
�������
��������������� . Given that each pixel requires 10
operations to compute, the pyramid requires about 60,000,000 operations. About 900,000,000 operations per second are required
to acheive a processing rate of 15 frames per second.

7

classification error. The learner is called weak because we do not expect even the best classification function

to classify the training data well (i.e. for a given problem the best perceptron may only classify the training

data correctly 51% of the time). In order for the weak learner to be boosted, it is called upon to solve a

sequence of learning problems. After the first round of learning, the examples are re-weighted in order to

emphasize those which were incorrectly classified by the previous weak classifier. The final strong classifier

takes the form of a perceptron, a weighted combination of weak classifiers followed by a threshold.5

The formal guarantees provided by the AdaBoost learning procedure are quite strong. Freund and

Schapire proved that the training error of the strong classifier approaches zero exponentially in the num-

ber of rounds. More importantly a number of results were later proved about generalization performance

[15]. The key insight is that generalization performance is related to the margin of the examples, and that

AdaBoost achieves large margins rapidly.

The conventional AdaBoost procedure can be easily interpreted as a greedy feature selection process.

Consider the general problem of boosting, in which a large set of classification functions are combined

using a weighted majority vote. The challenge is to associate a large weight with each good classification

function and a smaller weight with poor functions. AdaBoost is an aggressive mechanism for selecting a

small set of good classification functions which nevertheless have significant variety. Drawing an analogy

between weak classifiers and features, AdaBoost is an effective procedure for searching out a small number

of good “features” which nevertheless have significant variety.

One practical method for completing this analogy is to restrict the weak learner to the set of classification

functions each of which depend on a single feature. In support of this goal, the weak learning algorithm

is designed to select the single rectangle feature which best separates the positive and negative examples

(this is similar to the approach of [2] in the domain of image database retrieval). For each feature, the weak

learner determines the optimal threshold classification function, such that the minimum number of examples

are misclassified. A weak classifier (��� � � �) thus consists of a feature (*��), a threshold (���) and a parity (���)
indicating the direction of the inequality sign:

��� � � �/	 � � if �	�$*�� � � ��
 ���
���' otherwise

Here � is a 24x24 pixel sub-window of an image.

In practice no single feature can perform the classification task with low error. Features which are selected

early in the process yield error rates between 0.1 and 0.3. Features selected in later rounds, as the task

becomes more difficult, yield error rates between 0.4 and 0.5. Table 1 shows the learning algorithm.

5In the case where the weak learner is a perceptron learning algorithm, the final boosted classifier is a two layer perceptron. A
two layer perceptron is in principle much more powerful than any single layer perceptron.

8

� Given example images
� ��� ������� � 7�7�7 � � ��� ������� where ���&	4' �$� for negative and positive examples

respectively.� Initialize weights 	 � � ��	 �
�� �
�
�
 for ��� 	 ' �$� respectively, where � and

�
are the number of negatives

and positives respectively.� For � 	 � � 7�7�7 ��� :

1. Normalize the weights, 	�� � ��� 	�� � �� ���� � 	�� � �
so that 	�� is a probability distribution.

2. For each feature, � , train a classifier ��� which is restricted to using a single feature. The error is
evaluated with respect to 	�� , � � 	 � � 	 ��� � � � ��� � � ��� � .

3. Choose the classifier, ��� , with the lowest error �!� .
4. Update the weights: 	��#" � � ��	 	�� � �%$ ��&�')(�

where * ��	 ' if example �+� is classified correctly, * � 	 � otherwise, and $ � 	 ,%-��& , - .� The final strong classifier is:

� � � �/	/. � �10�#� ��2 � �3� � � ��4 �
 �10�#� ��2 �' otherwise

where 2 � 	6587�9 �: -
Table 1: The boosting algorithm for learning a query online. � hypotheses are constructed each using a
single feature. The final hypothesis is a weighted linear combination of the � hypotheses where the weights
are inversely proportional to the training errors.

3.1 Learning Discussion

Many general feature selection procedures have been proposed (see chapter 8 of [20] for a review). Our

final application demanded a very aggressive process which would discard the vast majority of features. For

a similar recognition problem Papageorgiou et al. proposed a scheme for feature selection based on feature

variance [10]. They demonstrated good results selecting 37 features out of a total 1734 features. While this

is a significant reduction, the number of features evaluated for every image sub-window is still reasonably

large.

Roth et al. propose a feature selection process based on the Winnow exponential perceptron learning rule

[12]. These authors use a very large and unusual feature set, where each pixel is mapped into a binary vector

of ; dimensions (when a particular pixel takes on the value � , in the range < ' � ; � �>= , the � -th dimension

is set to 1 and the other dimensions to 0). The binary vectors for each pixel are concatenated to form a

single binary vector with ?@; dimensions (? is the number of pixels). The classification rule is a perceptron,

9

which assigns one weight to each dimension of the input vector. The Winnow learning process converges to

a solution where many of these weights are zero. Nevertheless a very large number of features are retained

(perhaps a few hundred or thousand).

3.2 Learning Results

While details on the training and performance of the final system are presented in Section 5, several simple

results merit discussion. Initial experiments demonstrated that a classifier constructed from 200 features

would yield reasonable results (see Figure 4). Given a detection rate of 95% the classifier yielded a false

positive rate of 1 in 14084 on a testing dataset.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

false positive rate

co
rr

ec
t d

et
ec

tio
n

ra
te

ROC curve for 200 feature classifier

Figure 4: Reciever operating characteristic (ROC) curve for the 200 feature classifier.

For the task of face detection, the initial rectangle features selected by AdaBoost are meaningful and

easily interpreted. The first feature selected seems to focus on the property that the region of the eyes

is often darker than the region of the nose and cheeks (see Figure 5). This feature is relatively large in

comparison with the detection sub-window, and should be somewhat insensitive to size and location of the

face. The second feature selected relies on the property that the eyes are darker than the bridge of the nose.

In summary the 200-feature classifier provides initial evidence that a boosted classifier constructed from

rectangle features is an effective technique for object detection. In terms of detection, these results are com-

pelling but not sufficient for many real-world tasks. In terms of computation, this classifier is probably faster

than any other published system, requiring 0.7 seconds to scan an 384 by 288 pixel image. Unfortunately,

the most straightforward technique for improving detection performance, adding features to the classifier,

10

Figure 5: The first and second features selected by AdaBoost. The two features are shown in the top row
and then overlayed on a typical training face in the bottom row. The first feature measures the difference in
intensity between the region of the eyes and a region across the upper cheeks. The feature capitalizes on the
observation that the eye region is often darker than the cheeks. The second feature compares the intensities
in the eye regions to the intensity across the bridge of the nose.

directly increases computation time.

4 The Attentional Cascade

This section describes an algorithm for constructing a cascade of classifiers which achieves increased detec-

tion performance while radically reducing computation time. The key insight is that smaller, and therefore

more efficient, boosted classifiers can be constructed which reject many of the negative sub-windows while

detecting almost all positive instances. Simpler classifiers are used to reject the majority of sub-windows

before more complex classifiers are called upon to achieve low false positive rates.

Stages in the cascade are constructed by training classifiers using AdaBoost. Starting with a two-feature

strong classifier, an effective face filter can be obtained by adjusting the strong classifier threshold to min-

imize false negatives. The initial AdaBoost threshold,
�
 �10�#� � 2 � , is designed to yield a low error rate on

the training data. A lower threshold yields higher detection rates and higher false positive rates. Based on

performance measured using a validation training set, the two-feature classifier can be adjusted to detect

100% of the faces with a false positive rate of 40%. See Figure 5 for a description of the two features used

in this classifier.

The detection performance of the two-feature classifier is far from acceptable as an object detection

system. Nevertheless the classifier can significantly reduce the number sub-windows that need further pro-

cessing with very few operations:

1. Evaluate the rectangle features (requires between 6 and 9 array references per feature).

2. Compute the weak classifier for each feature (requires one threshold operation per feature).

11

3. Combine the weak classifiers (requires one multiply per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 microprocessor instructions. It seems hard to imagine that

any simpler filter could achieve higher rejection rates. By comparison, scanning a simple image template,

or a single layer perceptron, would require at least 20 times as many operations per sub-window.

The overall form of the detection process is that of a degenerate decision tree, what we call a “cascade”

[11] (see Figure 6). A positive result from the first classifier triggers the evaluation of a second classifier

which has also been adjusted to achieve very high detection rates. A positive result from the second classifier

triggers a third classifier, and so on. A negative outcome at any point leads to the immediate rejection of the

sub-window.

T

F

T

F

T

F

1 2 3

Reject Sub−window

All Sub−windows

Further
Processing

Figure 6: Schematic depiction of a the detection cascade. A series of classifiers are applied to every sub-
window. The initial classifier eliminates a large number of negative examples with very little processing.
Subsequent layers eliminate additional negatives but require additional computation. After several stages of
processing the number of sub-windows have been reduced radically. Further processing can take any form
such as additional stages of the cascade (as in our detection system) or an alternative detection system.

The structure of the cascade reflects the fact that within any single image an overwhelming majority of

sub-windows are negative. As such, the cascade attempts to reject as many negatives as possible at the

earliest stage possible. While a positive instance will trigger the evaluation of every classifier in the cascade,

this is an exceedingly rare event.

Much like a decision tree, subsequent classifiers are trained using those examples which pass through all

the previous stages. As a result, the second classifier faces a more difficult task than the first. The examples

which make it through the first stage are “harder” than typical examples. The more difficult examples faced

by deeper classifiers push the entire reciever operating characteristic (ROC) curve downward. At a given

detection rate, deeper classifiers have correspondingly higher false positive rates.

12

4.1 Training a Cascade of Classifiers

The cascade design process is driven from a set of detection and performance goals. For the face detection

task, past systems have achieved good detection rates (between 85 and 95 percent) and extremely low false

positive rates (on the order of ��' &�� or ��' &��). The number of cascade stages and the size of each stage must

be sufficient to achieve similar detection performance while minimizing computation.

Given a trained cascade of classifiers, the false positive rate of the cascade is� 	 ��� � � * � �
where

�
is the false positive rate of the cascaded classifier, � is the number of classifiers, and * � is the false

positive rate of the

�
th classifier on the examples that get through to it. The detection rate is

� 	 ��� � � ; � �
where � is the detection rate of the cascaded classifier, � is the number of classifiers, and ; � is the detection

rate of the

�
th classifier on the examples that get through to it.

Given concrete goals for overall false positive and detection rates, target rates can be determined for each

stage in the cascade process. For example a detection rate of ' 7�� can be achieved by a 10 stage classifier

if each stage has a detection rate of 0.99 (since ' 7��
	 ' 7���� �
�). While achieving this detection rate may

sound like a daunting task, it is made significantly easier by the fact that each stage need only achieve a false

positive rate of about 30% (' 7
�' �
� 	���� ��' &��).
The number of features evaluated when scanning real images is necessarily a probabilistic process. Any

given sub-window will progress down through the cascade, one classifier at a time, until it is decided that

the window is negative or, in rare circumstances, the window succeeds in each test and is labelled positive.

The expected behavior of this process is determined by the distribution of image windows in a typical test

set. The key measure of each classifier is its “positive rate”, the proportion of windows which are labelled

as potentially containing the object of interest. The expected number of features which are evaluated is:

� 	 ? �/� �� � � �
��
? � ���� � ������

where
�

is the expected number of features evaluated, � is the number of classifiers, � � is the positive rate

of the

�
th classifier, and ? � are the number of features in the

�
th classifier. Interestingly, since objects are

extremely rare the “positive rate” is effectively equal to the false positive rate.

The process by which each element of the cascade is trained requires some care. The AdaBoost learning

procedure presented in Section 3 attempts only to minimize errors, and is not specifically designed to achieve

13

high detection rates at the expense of large false positive rates. One simple, and very conventional, scheme

for trading off these errors is to adjust the threshold of the perceptron produced by AdaBoost. Higher

thresholds yield classifiers with fewer false positives and a lower detection rate. Lower thresholds yield

classifiers with more false positives and a higher detection rate. It is not clear, at this point, whether adjusting

the threshold in this way preserves the training and generalization guarantees provided by AdaBoost.

The overall training process involves two types of tradeoffs. In most cases classifiers with more features

will achieve higher detection rates and lower false positive rates. At the same time classifiers with more

features require more time to compute. In principle one could define an optimization framework in which

� the number of classifier stages,

� the number of features, ? � , of each stage,

� the threshold of each stage

are traded off in order to minimize the expected number of features
�

given a target for
�

and � . Unfortu-

nately finding this optimum is a tremendously difficult problem.

In practice a very simple framework is used to produce an effective classifier which is highly efficient. The

user selects the minimum acceptable rates for * � and ; � . Each layer of the cascade is trained by AdaBoost

(as described in Table 1) with the number of features used being increased until the target detection and false

positves rates are met for this level. The rates are determined by testing the current detector on a validation

set. If the overall target false positive rate is not yet met then another layer is added to the cascade. The

negative set for training subsequent layers is obtained by collecting all false detections found by running the

current detector on a set of images which do not contain any instances of the object. This algorithm is given

more precisely in Table 2.

4.2 Simple Experiment

In order to explore the feasibility of the cascade approach two simple detectors were trained: a monolithic

200-feature classifier and a cascade of ten 20-feature classifiers. The first stage classifier in the cascade was

trained using 5000 faces and 10000 non-face sub-windows randomly chosen from non-face images. The

second stage classifier was trained on the same 5000 faces plus 5000 false positives of the first classifier.

This process continued so that subsequent stages were trained using the false positives of the previous stage.

The monolithic 200-feature classifier was trained on the union of all examples used to train all the stages

of the cascaded classifier. Note that without reference to the cascaded classifier, it might be difficult to select

a set of non-face training examples to train the monolithic classifier. We could of course use all possible

sub-windows from all of our non-face images, but this would make the training time impractically long.

The sequential way in which the cascaded classifier is trained effectively reduces the non-face training set

by throwing out easy examples and focusing on the “hard” ones.

14

� User selects values for * , the maximum acceptable false positive rate per layer and ; , the minimum
acceptable detection rate per layer.� User selects target overall false positive rate,

� ������� ' � .��� = set of positive examples� �
= set of negative examples� � � 	 � 7 ' ; � � 	 � 7 '

� � 	 '
� while

� �	� � ������� ' �
–

� � � � �
– ? � 	 ' ;

� ��	 � � &��
– while

� �	� * � � � &��. ? ��� ? ��� �. Use � and
�

to train a classifier with ? � features using AdaBoost. Evaluate current cascaded classifier on validation set to determine
� � and � � .. Decrease threshold for the

�
th classifier until the current cascaded classifier has a detection

rate of at least ; � � � &�� (this also affects
� �)

–
� ��

– If
� �	� � ������� ' � then evaluate the current cascaded detector on the set of non-face images and put

any false dectections into the set N

Table 2: The training algorithm for building a cascaded detector.

Figure 7 gives the ROC curves comparing the performance of the two classifiers. It shows that there is

little difference between the two in terms of accuracy. However, there is a big difference in terms of speed.

The cascaded classifier is nearly 10 times faster since its first stage throws out most non-faces so that they

are never evaluated by subsequent stage.

4.3 Detector Cascade Discussion

A notion similar to the cascade appears in the face detection system described by Rowley et al. [13]. Rowley

et al. trained two neural networks. One network was moderately complex, focused on a small region of the

image, and detected faces with a low false positive rate. They also trained a second neural network which

was much faster, focused on a larger regions of the image, and detected faces with a higher false positive

rate. Rowley et al. used the faster second network to prescreen the image in order to find candidate regions

for the slower more accurate network. Though it is difficult to determine exactly, it appears that Rowley et

15

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

false positive rate

co
rr

ec
t d

et
ec

tio
n

ra
te

ROC curves comparing cascaded classifier to monolithic classifier

Cascaded set of 10 20−feature classifiers
200 feature classifier

Figure 7: ROC curves comparing a 200-feature classifier with a cascaded classifier containing ten 20-feature
classifiers. Accuracy is not significantly different, but the speed of the cascaded classifier is almost 10 times
faster.

al.’s two network face system is the fastest existing face detector.6 Our system uses a similar approach, but

it extends this two stage cascade to include 32 stages.

The structure of the cascaded detection process is essentially that of a degenerate decision tree, and as

such is related to the work of Amit and Geman [1]. Unlike techniques which use a fixed detector, Amit and

Geman propose an alternative point of view where unusual co-occurrences of simple image features are used

to trigger the evaluation of a more complex detection process. In this way the full detection process need not

be evaluated at many of the potential image locations and scales. While this basic insight is very valuable, in

their implementation it is necessary to first evaluate some feature detector at every location. These features

are then grouped to find unusual co-occurrences. In practice, since the form of our detector and the features

that it uses are extremely efficient, the amortized cost of evaluating our detector at every scale and location

is much faster than finding and grouping edges throughout the image.

In recent work Fleuret and Geman have presented a face detection technique which relies on a “chain”

of tests in order to signify the presence of a face at a particular scale and location [4]. The image properties

measured by Fleuret and Geman, disjunctions of fine scale edges, are quite different than rectangle features

which are simple, exist at all scales, and are somewhat interpretable. The two approaches also differ radically

6Other published detectors have either neglected to discuss performance in detail, or have never published detection and false
positive rates on a large and difficult training set.

16

in their learning philosophy. The motivation for Fleuret and Geman’s learning process is density estimation

and density discrimination, while our detector is purely discriminative. Finally the false positive rate of

Fleuret and Geman’s approach appears to be higher than that of previous approaches like Rowley et al.

and this approach. Unfortunately the paper does not report quantitative results of this kind. The included

example images each have between 2 and 10 false positives.

5 Results

This section describes the final face detection system. The discussion includes details on the structure and

training of the cascaded detector as well as results on a large real-world testing set.

5.1 Training Dataset

The face training set consisted of 4916 hand labeled faces scaled and aligned to a base resolution of 24 by

24 pixels. The faces were extracted from images downloaded during a random crawl of the world wide web.

Some typical face examples are shown in Figure 8. Notice that these examples contain more of the head

than the examples used by Rowley or et al. [13] or Sung [18]. Initial experiments also used 16 by 16 pixel

training images in which the faces were more tightly cropped, but got slightly worse results. Presumably

the 24 by 24 examples include extra visual information such as the contours of the chin and cheeks and the

hair line which help to improve accuracy. Because of the nature of the features used, the larger sized sub-

windows do not slow performance. In fact, the additional information contained in the larger sub-windows

could be used to reject non-faces earlier in the detection cascade.

5.2 Structure of the Detector Cascade

The final detector is a 32 layer cascade of classifiers which included a total of 4297 features.

The first classifier in the cascade is constructed using two features and rejects about 60% of non-faces

while correctly detecting close to 100% of faces. The next classifier has five features and rejects 80% of

non-faces while detecting almost 100% of faces. The next three layers are 20-feature classifiers followed

by two 50-feature classifiers followed by five 100-feature classifiers and then twenty 200-feature classi-

fiers. The particular choices of number of features per layer was driven through a trial and error process in

which the number of features were increased until a significant reduction in the false positive rate could be

achieved. More levels were added until the false positive rate on the validation set was nearly zero while

still maintaining a high correct detection rate. The final number of layers, and the size of each layer, are not

critical to the final system performance.

The two, five and first twenty-feature classifiers were trained with the 4916 faces and 10,000 non-face

sub-windows (also of size 24 by 24 pixels) using the Adaboost training procedure described in Table 1. The

non-face sub-windows were collected by selecting random sub-windows from a set of 9500 images which

17

Figure 8: Example of frontal upright face images used for training.

did not contain faces. Different sets of non-face sub-windows were used for training the different classifiers

to ensure that they were somewhat independent and didn’t use the same features.

The non-face examples used to train subsequent layers were obtained by scanning the partial cascade

across large non-face images and collecting false positives. A maximum of 6000 such non-face sub-windows

were collected for each layer. There are approximately 350 million non-face sub-windows contained in the

9500 non-face images.

Training time for the entire 32 layer detector was on the order of weeks on a single 466 MHz AlphaS-

tation XP900. During this laborious training process several improvements to the learning algorithm were

discovered. These improvements, which will be described elsewhere, yield a 100 fold decrease in training

time.

5.3 Speed of the Final Detector

The speed of the cascaded detector is directly related to the number of features evaluated per scanned sub-

window. As discussed in section 4.1, the number of features evaluated depends on the images being scanned.

Evaluated on the MIT+CMU test set [13], an average of 8 features out of a total of 4297 are evaluated per

sub-window. This is possible because a large majority of sub-windows are rejected by the first or second

18

layer in the cascade. On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288

pixel image in about .067 seconds (using a starting scale of 1.25 and a step size of 1.5 described below).

This is roughly 15 times faster than the Rowley-Baluja-Kanade detector [13] and about 600 times faster than

the Schneiderman-Kanade detector [16].

5.4 Image Processing

All example sub-windows used for training were variance normalized to minimize the effect of different

lighting conditions. Normalization is therefore necessary during detection as well. The variance of an image

sub-window can be computed quickly using a pair of integral images. Recall that �

 	 �
 � �

�
� �
 , where

� is the standard deviation, � is the mean, and � is the pixel value within the sub-window. The mean of

a sub-window can be computed using the integral image. The sum of squared pixels is computed using an

integral image of the image squared (i.e. two integral images are used in the scanning process). During

scanning the effect of image normalization can be achieved by post multiplying the feature values rather

than operating on the pixels.

5.5 Scanning the Detector

The final detector is scanned across the image at multiple scales and locations. Scaling is achieved by

scaling the detector itself, rather than scaling the image. This process makes sense because the features can

be evaluated at any scale with the same cost. Good results were obtained using a set of scales a factor of

1.25 apart.

The detector is also scanned across location. Subsequent locations are obtained by shifting the window

some number of pixels
�

. This shifting process is affected by the scale of the detector: if the current scale

is � the window is shifted by < � � = , where < = is the rounding operation.

The choice of
�

affects both the speed of the detector as well as accuracy. Since the training images

have some translational variability the learned detector achieves good detection performance in spite of

small shifts in the image. As a result the detector sub-window can be shifted more than one pixel at a

time. However, a step size of more than one pixel tends to decrease the detection rate slightly while also

decreasing the number of false positives. We present results for two different step sizes.

5.6 Integration of Multiple Detections

Since the final detector is insensitive to small changes in translation and scale, multiple detections will

usually occur around each face in a scanned image. The same is often true of some types of false positives. In

practice it often makes sense to return one final detection per face. Toward this end it is useful to postprocess

the detected sub-windows in order to combine overlapping detections into a single detection.

19

In these experiments detections are combined in a very simple fashion. The set of detections are first

partitioned into disjoint subsets. Two detections are in the same subset if their bounding regions overlap.

Each partition yields a single final detection. The corners of the final bounding region are the average of the

corners of all detections in the set.

In some cases this postprocessing decreases the number of false positives since an overlapping subset of

false positives is reduced to a single detection.

5.7 Experiments on a Real-World Test Set

We tested our system on the MIT+CMU frontal face test set [13]. This set consists of 130 images with 507

labeled frontal faces. A ROC curve showing the performance of our detector on this test set is shown in

Figure 9. To create the ROC curve the threshold of the perceptron on the final layer classifier is adjusted

from ��� to ��� . Adjusting the threshold to ��� will yield a detection rate of 0.0 and a false positive rate

of 0.0. Adjusting the threshold to ��� , however, increases both the detection rate and false positive rate,

but only to a certain point. Neither rate can be higher than the rate of the detection cascade minus the final

layer. In effect, a threshold of ��� is equivalent to removing that layer. Further increasing the detection

and false positive rates requires decreasing the threshold of the next classifier in the cascade. Thus, in order

to construct a complete ROC curve, classifier layers are removed. We use the number of false positives as

opposed to the rate of false positives for the x-axis of the ROC curve to facilitate comparison with other

systems. To compute the false positive rate, simply divide by the total number of sub-windows scanned.

For the case of
� 	2� 7 ' and starting scale = 1.0, the number of sub-windows scanned is 75,081,800. For

� 	 � 7�� and starting scale = 1.25, the number of sub-windows scanned is 18,901,947.

Unfortunately, most previous published results on face detection have only included a single operating

regime (i.e. single point on the ROC curve). To make comparison with our detector easier we have listed our

detection rate for the same false positive rate reported by the other systems. Table 3 lists the detection rate

for various numbers of false detections for our system as well as other published systems. For the Rowley-

Baluja-Kanade results [13], a number of different versions of their detector were tested yielding a number of

different results. While these various results are not actually points on a ROC curve for a particular detector,

they do indicate a number of different performance points that can be achieved with their approach. They

did publish ROC curves for two of their detectors, but these ROC curves did not represent their best results.

Thus the detection rates listed in the table below for the Rowley-Baluja-Kanade detector are actually results

for different versions of their detector. For the Roth-Yang-Ahuja detector [12], they reported their result on

the MIT+CMU test set minus 5 images containing line drawn faces removed. So their results are for a subset

of the MIT+CMU test set containing 125 images with 483 faces. Presumably their detection rate would be

lower if the full test set was used. The parentheses around their detection rate indicates this slightly different

test set.

20

�
�

�
�

�
�

�
�

�
�

�
�

� �
Detector

False detections

10 31 50 65 78 95 110 167 422

Viola-Jones 78.3% 85.2% 88.8% 89.8% 90.1% 90.8% 91.1% 91.8% 93.7%
Rowley-Baluja-Kanade 83.2% 86.0% - - - 89.2% - 90.1% 89.9%
Schneiderman-Kanade - - - 94.4% - - - - -
Roth-Yang-Ahuja - - - - (94.8%) - - - -

Table 3: Detection rates for various numbers of false positives on the MIT+CMU test set containing 130
images and 507 faces.

The Sung and Poggio face detector [18] was tested on the MIT subset of the MIT+CMU test set since

the CMU portion did not exist yet. The MIT test set contains 23 images with 149 faces. They achieved a

detection rate of 79.9% with 5 false positives. Our detection rate with 5 false positives is 77.8% on the MIT

test set.

Figure 10 shows the output of our face detector on some test images from the MIT+CMU test set.

0 200 400 600 800 1000 1200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

co
rr

ec
t d

et
ec

tio
n

ra
te

false positives

ROC curves for face detector

step=1.0, first scale=1.0
step=1.5, first scale=1.25

Figure 9: ROC curves for our face detector on the MIT+CMU test set. The detector was run once using a
step size of 1.0 and starting scale of 1.0 (75,081,800 sub-windows scanned) and then again using a step size
of 1.5 and starting scale of 1.25 (18,901,947 sub-windows scanned). In both cases a scale factor of 1.25 was
used.

21

6 Conclusions

We have presented an approach for object detection which minimizes computation time while achieving high

detection accuracy. The approach was used to construct a face detection system which is approximately 15

faster than any previous approach. Preliminary experiments, which will be described elsewhere, show that

highly efficient detectors for other objects, such as pedestrians, can also be constructed in this way.

This paper brings together new algorithms, representations, and insights which are quite generic and may

well have broader application in computer vision and image processing.

The first contribution is a new a technique for computing a rich set of image features using the integral

image. In order to achieve true scale invariance, almost all object detection systems must operate on muliple

image scales. The integral image, by eliminating the need to compute a multi-scale image pyramid, reduces

the initial image processing required for object detection significantly. In the domain of face detection the

advantage is quite dramatic. Using the integral image, face detection is completed before an image pyramid

can be computed.

While the integral image should also have immediate use for other systems which have used Harr-like

features (such as Papageorgiou et al. [10]), it can foreseeably have impact on any task where Harr-like

features may be of value. Initial experiments have shown that a similar feature set is also effective for the

task of parameter estimation, where the expression of a face, the position of a head, or the pose of an object

is determined.

The second contribution of this paper is a technique for feature selection based on AdaBoost. An aggres-

sive and effective technique for feature selection will have impact on a wide variety of learning tasks. Given

an effective tool for feature selection, the system designer is free to define a very large and very complex

set of features as input for the learning process. The resulting classifier is nevertheless computationally effi-

cient, since only a small number of features need to be evaluated during run time. Frequently the resulting

classifier is also quite simple; within a large set of complex features it is more likely that a few critical

features can be found which capture the structure of the classification problem in a straightforward fashion.

The third contribution of this paper is a technique for constructing a cascade of classifiers which radically

reduce computation time while improving detection accuracy. Early stages of the cascade are designed

to reject a majority of the image in order to focus subsequent processing on promising regions. One key

point is that the cascade presented is quite simple and homogeneous in structure. Previous approaches for

attentive filtering, such as Itti et. al., propose a more complex and heterogeneous mechanism for filtering

[8]. Similarly Amit and Geman propose a hierarchical structure for detection in which the stages are quite

different in structure and processing [1]. A homogenous system, besides being easy to implement and

understand, has the advantage that simple tradeoffs can be made between processing time and detection

performance.

Finally this paper presents a set of detailed experiments on a difficult face detection dataset which has been

widely studied. This dataset includes faces under a very wide range of conditions including: illumination,

22

scale, pose, and camera variation. Experiments on such a large and complex dataset are difficult and time

consuming. Nevertheless systems which work under these conditions are unlikely to be brittle or limited

to a single set of conditions. More importantly conclusions drawn from this dataset are unlikely to be

experimental artifacts.

7 Acknowledgements

The authors would like to thank T. M. Murali, Jim Rehg, Tat-jen Cham, Rahul Sukthankar, Vladimir

Pavlovic, and Thomas Leung for the their helpful comments. Henry Rowley was extremely helpful in

providing implementations of his face detector for comparison with our own.

References

[1] Y. Amit, D. Geman, and K. Wilder. Joint induction of shape features and tree classifiers, 1997.

[2] Anonymous. Anonymous. In Anonymous, 2000.

[3] F. Crow. Summed-area tables for texture mapping. In Proceedings of SIGGRAPH, volume 18(3), pages 207–212,
1984.

[4] F. Fleuret and D. Geman. Coarse-to-fine face detection. Int. J. Computer Vision, 2001.

[5] William T. Freeman and Edward H. Adelson. The design and use of steerable filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. In Computational Learning Theory: Eurocolt ’95, pages 23–37. Springer-Verlag, 1995.

[7] H. Greenspan, S. Belongie, R. Gooodman, P. Perona, S. Rakshit, and C. Anderson. Overcomplete steerable
pyramid filters and rotation invariance. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1994.

[8] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Patt.
Anal. Mach. Intell., 20(11):1254–1259, November 1998.

[9] Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector machines: an application to face
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1997.

[10] C. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection. In International Conference
on Computer Vision, 1998.

[11] J. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[12] D. Roth, M. Yang, and N. Ahuja. A snowbased face detector. In Neural Information Processing 12, 2000.

[13] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. In IEEE Patt. Anal. Mach. Intell.,
volume 20, pages 22–38, 1998.

[14] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a new explanation for the effectiveness
of voting methods. Ann. Stat., 26(5):1651–1686, 1998.

[15] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. In Proceedings of the Fourteenth International Conference on Machine
Learning, 1997.

23

[16] H. Schneiderman and T. Kanade. A statistical method for 3D object detection applied to faces and cars. In
International Conference on Computer Vision, 2000.

[17] Patrice Y. Simard, Lon Bottou, Patrick Haffner, and Yann Le Cun. Boxlets: a fast convolution algorithm for signal
processing and neural networks. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information
Processing Systems, volume 11, pages 571–577, 1999.

[18] K. Sung and T. Poggio. Example-based learning for view-based face detection. In IEEE Patt. Anal. Mach. Intell.,
volume 20, pages 39–51, 1998.

[19] J.K. Tsotsos, S.M. Culhane, W.Y.K. Wai, Y.H. Lai, N. Davis, and F. Nuflo. Modeling visual-attention via
selective tuning. Artificial Intelligence Journal, 78(1-2):507–545, October 1995.

[20] Andrew Webb. Statistical Pattern Recognition. Oxford University Press, New York, 1999.

24

Figure 10: Output of our face detector on a number of test images from the MIT+CMU test set.

25

