.\\\wz/f \%
\>S%/-“”_J:;\\J>r@

’

HOBO T2

N

S

4

ASTMO\z

SIS
FUTUR1E95VOISION

TSAACIR

N

.%__’7

k o
—(=N [t\k{

2020

COMPUTER

VISION

Convolutional Layer

0 fw-z4+5b<0
1 ifw-z4+b>0

- ’

AL .| w-xr =) j WiT;.

v Share the same parameters across
» (S different locations (assuming input is

" f;" v, stationary):
11 = Convolutions with learned kernels

ST

_ ‘ Perceptron: output = {
A

36
Ranzaton

Convolutional Layer

101
*|-101
101

Shared weights

Ranzaton

Convolutional Layer

Learn multiple filters.

Filter = ‘local’ perceptron.
g\ Also called kernel.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton

Yann LeCun’s MINIST CNN architecture

; G301 maps 16E10x10

B@ 2828
3232 52: f. maps C5: layer e
B@14x14 o ey R

Full connectian Gaussian connections
i Subsamplin |Liti Subsamplin Full ecli
Canvalutions pling Canvolutions pling Uil conneciion Ranzato

Interpretation

prediction of class

high-level
parts

= distributed representations
s feature sharing
= compositionality

mid-level
parts

low level
parts

Input image ey

e

e el 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Hanzaton

DEMO

http://scs.ryerson.ca/~aharley/vis/conv/

Thanks to Adam Harley for making this.

More here: http://scs.ryerson.ca/~aharley/vis

http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/

Convolutions: More detall

32x32x3 image

32 height

3 depth

Andrej Karpathy

Convolutions: More detall

32x32x3 image

5x5x3 filter

32 II|

32

Andrej Karpathy

Convolutions: More detall

Convolution Layer

activation map

_— 32X%32X%3 Image

T 5x5x3 filter /
2
@>® ”

convolve (slide) over all

spatial locations
32 28

Andrej Karpathy

Convolutions: More detall

For example, if we had 6 5x3 filters, we'll get 6 separate activation maps:

activation maps
Z

NN

32

28

Convolution Layer

7

32 i 28
3 6

We stack these up to get a “new image” of size 28x28x6!

Andrej Karpathy

Convolutions: More detall

32

Andrej Karpathy

32

CONV,
RelLU
eg. 6
IXOX3
filters

28

28

CONYV,
RelLU
e.g. 10
IXOX6
filters

10

24

CONYV,
RelLU

24

Think-Pair-Share

Input size: 96 x 96 x 3
Kernel size: 5x5x 3
Stride: 1

Max pooling layer: 4 x 4

Output feature map size?
a)5x5

b) 22 x 22

c) 23 x 23

d) 24 x 24

e) 25 x 25

Input size: 96 x 96 x 3
Kernel size: 3 x3x 3
Stride: 3

Max pooling layer: 8 x 8

Output feature map size?
a)2x?2

b)3x3

c)4x4

d)5x5

e)12x12

Convolutions: More detail
N

Output size:
(N - F)/ stride + 1

Andrej Karpathy

Our connectomics diagram

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Input
75x75x4
Image 4X75x75 64x73x73 64x36x36 48x34x34 48x17x17 48x15x15 48XTxT 48x5x5 48x2x2
m [[[s [[[[
Prob. 3x3p 2x2F 3x3p 2x2F 3x3P 2x2F 3x3p 2x2P
Label Input Convolution Pooling Convolution Pooling Convolution Pooling Convolution Pooling
B (Max) (Max) (Max) (Max)
Dropout Dropout Dropout Dropout
Border p=.2 p=.2 p=.2 p=.2
Conv1 Conv 2 Conv 3 Conv 4
3x3x4 3x3x64 3x3x48 3x3x48
64 filters 48 filters 48 filters 48 filters

Max pooling Max pooling Max pooling Max pooling
2x2 per filter 2x2 per filter 2x2 per filter 2x2 per filter

Dense
RelLU
Dropout
p=.5

2
1: Split Error
0: Correct

Dense
Softmax

Rea d N g params AlexNet FLOPs

architecture v ST o
diagrams

Layers

- Kernel sizes
- Strides

- #channels

- #kernels

- Max pooling

307K 223M

35K

[Krizhevsky et al. 2012]

AlexNet diagram (simplified)

Input size
227 x 227 x 3
5%
2 dense dense
13 13 13 _— dense
11 \ .
! T e, 3 2
i | M, 8 ' : 13 3 13 T ™M r
. 27 1 3
Input “NA 3 3
image - 384 _ 384 256 1000
(RGB) - e || L
‘ Max = Max pooling 4096 4096
Stride 96 r— pooling
227 ofd 3x3 3x3
- Stride 2 Stride 2
Conv1 Conv 2 Conv3 Conv 4 Conv 4
11x11x3 5x5x96 3x3x256 3x3x192 3x3x192
Stride 4 Stride 1 Stride 1 Stride 1 Stride 1

96 filters 256 filters 384 filters 384 filters 256 filters

Wait, why isn’t it called a correlation neural network?

It could be.
Deep learning libraries implement correlation.

Correlation relates to convolution via a 180deg rotation
of the kernel. When we learn kernels, we could easily
learn them flipped.

Associative property of convolution ends up not being
important to our application, so we just ignore it.

[p.323, Goodfellow]

What does it mean to convolve over
greater-than-first-layer hidden units?

Yann LeCun’s MINIST CNN architecture

; G301 maps 16E10x10

B@ 2828
3232 52: f. maps C5: layer e
B@14x14 o ey R

Full connectian Gaussian connections
i Subsamplin |Liti Subsamplin Full ecli
Canvalutions pling Canvolutions pling Uil conneciion Ranzato

Multi-layer perceptron (MLP)

...i1s a ‘fully connected’ neural network with non-
linear activation functions.

output

‘Feed-forward’ neural network

Nielson

Does anyone pass along the weight without an
activation function?

No — this is linear chaining.

Output vector

Does anyone pass along the weight without an
activation function?

No — this is linear chaining.

Input

Output vector
vector

Are there other activation functions?

Yes, many.

As long as:

- Activation function s(z) is well-defined
as zZ->-o0 gnd z -> oo
- These limits are different

Then we can make a step!
It can be shown that it is universal for function
approximation.

Activation functions:
Rectified Linear Unit

* RelLU

f(z)

1.0 4

0.8

0.6+

0.4

0.2 -

0.0

= max(0, z).

T 1 | T I
-4 -3 -2 -1 0 1

I
2

RelU

Lt 3

Wyr +b Wir 4+ b

Cyh24 - http://prog3.com/sbdm/blog/cyh 24

Rectified Linear Unit

Question: What do ReLU layers accomplish?

Answer: Piece-wise linear tiling: mapping is locally linear.

Ranzato

What is the relationship between SVMs
and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

What is the relationship between SVMs
and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

A perceptron does not.
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal
stability’ is used in SVM:

Perceptron

+ optimal stability

+ kernel trick

= foundations of SVM

| I | |
| & w) = (=] = N w B w

Why is pooling useful again?
What kinds of pooling operations might we consider?

Pooling Layer

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

Useful for classification, when | don’t care
about where | ‘see’ a feature!

Pooling layer
output

Convolutional
layer output

61
Ranzaton

Pooling is similar to downsampling

...but on feature maps,
not the input!

...except sometimes we
don’t want to blur,
as other functions might

be better for classification.

| Level 4
Blurand %116 resolution
subsample /4 Level 3
Blur and , 1/8 resolution
subsample | L~ Level 2
< 1/4 resolution
Blur and
subsample :
I .,) 2Leve|| 1ti
= 1/2 resolution
Blur and
subsample
Level 0
- Original
/’4 3 b \ image

Pooling Layer: Examples
Max-pooling:
h};(x’y):maxfeN(x),jzeN(y)]

Average pooling'

I/sze), VEN(y f;_l

Max pooling

Single depth slice

-

Wikipedia

OK, so what about invariances?
What about translation, scale, rotation?

Convolution is translation equivariant (‘shift-equivariant’)
— we could shift the image and the kernel would give us a
corresponding (‘equal’) shift in the feature map.

But! If we rotated or scaled the input, the same kernel would
give a different response.

Pooling lets us aggregate (avg) or pick from (max) responses,
but the kernels themselves must be trained and so learn to
activate on scaled or rotated instances of the object.

If we max pooled over depth (# kernels)...

Large response

Large response

in pooling unit in pooling unit

Large Large
response response
in detector in detector

unit 3

LilE|ls| | b5]||s

unit 1

Three different (9

kernels trained to
fire on different
rotations of ‘5.

Fig 9.9, Goodfellow et al. [the book]

Pooling Layer: Receptive Field Size

Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

(P+KAX(P+K1) o
5eee
gz %
g ale %
X
’b‘ 66
‘ Ranzaton

Pooling Layer: Receptive Field Size

hn—l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

67
Ranzaton

I’'ve heard about many more terms of jargon!
Skip connections
Residual connections

Batch normalization

..we’ll get to these in a little while.

Training Neural Networks

Gradient descent

fix)

General approach

Pick random starting point.

fix)

General approach

Compute gradient at point (analytically or by finite differences)

fix)

V f(a)

General approach

Move along parameter space in direction of negative gradient

fix)

y = amount to move
= learning rate

General approach

Move along parameter space in direction of negative gradient.

fix)
\

I
L

a; a,as

¥ = amount to move
as; =a, #yV f(a,) = learning rate

v

General approach

Stop when we don’t move any more.

fix)

Astop-
an—1— YV f(an_1) =0

I
R

A, A3 Qgstop X

Gradient descent

Optimizer for functions.

Guaranteed to find optimum for convex functions.
* Non-convex = find local optimum. flx) 1

* Most vision problems aren’t convex. v

Works for multi-variate functions.
* Need to compute matrix of partial derivatives (“Jacobian”)

»
|

X

Why would | use this over Least Squares?

If my function is convex,
why can’t | just use linear least squares?

Ax —b =0
F(x) = || Ax — b]|*.
VF(x) = 24" (Ax — b).

Analytic solution = normal equations x = (ATA)7'A"b

You can, yes.

Why would | use this over Least Squares?

But now imagine that | have 1,000,000 data points.
Matrices are _huge .

Even for convex functions, gradient descent allows
me to iteratively solve the solution without requiring
very large matrices.

We'’ll see how.

Train NN with Gradient Descent

. xi,yi = n training examples
* f(x) = feed forward neural network
* L(x, y; ©) = some loss function

Loss function measures how ‘good’ our network is at
classifying the training examples wrt. the parameters
of the model (the perceptron weights).

Train NN with Gradient Descent

Loss function N
(Evaluate NN
on training data)

I |

1 T >

a; AAa3z Astop Model parameters
(perceptron weights)

How Good is a Network?

What is an appropriate loss?

What if we define an output threshold on detection?
e Classification: compare training class to output class
e Zero-one loss L (per class)

y = true label - e
y = predicted label L(y, y) = I(y 7 y)1

Is it good?
* Nope —it’s a step function.
* | need to compute the gradient of the loss.
* This loss is not differentiable, and ‘flips’ easily.

Classification as probability

Special function on last layer - ‘Softmax’ o():

“Squashes"” a C-dimensional vector O of arbitrary real
values to a C-dimensional vector o(0) of real values in the
range (0, 1) that add up to 1.

Turns the output into a probability distribution on classes.

p(ck:Hx): C

Classification as probability

Softmax example:

“Squashes"” a C-dimensional vector O of arbitrary real
values to a C-dimensional vector o(0) of real values in the
range (0, 1) that add up to 1.

Turns the output into a probability distribution on classes.

Output from perceptron layer
‘distance from class boundary’

0=[2.0,0.7,0.2,-0.3,-0.6, -2.5]

ple,=l1lx)= Zf - o(0) =[0.616, 0.168, 0.102, 0.061, 0.046, 0.007]
e

J

How Good is a Network?

Softmax

Cross-entropy loss function

Negative log-likelihood

L(x,y:0) = -) y;logp(c;lx)
J

e Measures difference between t °

predicted and training
probability distributions
(see Project 4 for more details)
* Isit a good loss?
* Differentiable

* Cost decreases as
probability increases

4.5

at o\

157
1t

0.5

0 i L 1 L L L i [i— -
0 0.1 02 03 04 05 06 07 08 089 1

4|

35 |

25

p(cjlx)

How Good is a Network?

Softmax

Probability of class k given input (softmax):

o

e
p(Ck — 1 |x) — C
2., ¢
j=1
(Per-sample) Loss; e.g., negative log-likelihood (good for classification
of small number of classes):

L(xayfe):_zj yflogp(CJ"x) Ranzaltgon

k

Training

Learning consists of minimizing the loss wrt. parameters
over the whole training set.

P
0~ =arg min, anl L(x",y",0)

Training

Learning consists of minimizing the loss wrt. parameters
over the whole training set.

P
0~ =arg min, anl L(x",y",0)

Question: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure
to compute gradients of the loss w.r.t. parameters in a multi-layer
neural network.

19

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986

Key Idea: Wiggle To Decrease Loss

Softmax

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y;0\W"

i j?

W, +e)

Key Idea: Wiggle To Decrease Loss

Softmax

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y; 0\ W:,J.+e)

i Jj?

Then, update:
W:,J.<—Wf,j+e sgn(L(x,y:0)—L(x,y;0\W'

i, J?

W, +e))

Ranzaton

Derivative of loss wrt. softmax

O

ple=1lx)= Z =

1 k C
L(x,y;@):—zj y,log p(c |x) y=[00..010..0]

By substituting the fist formula in the second, and taking the
derivative w.rt. 0 we get:

oL

8_0: p(ch)—y

21
Ranzaton

Backward Propagation

oL

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

oL OL oo

<- Chain rule from calculus

ow® 0o oW’

22

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

0L 9L do 0L 8L do

ow® 0o oW’ oh> 00 on

22

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the

Jacobian of each module, we have:

0L oL do 0L 0L 0o
ow® 0o oW’ oh> 00 on
oL oL
= (plc|x)—y) b =W (plex)—y)=

oW’ oh’

Backward Propagation

oL
oh’

oL 0L on’ oL oL ol

ow® on® ow? oh' ohn’ on'

Given

we can compuie now:

24
Ranzaton

Backward Propagation

oL
oh'

0L OL Oh'
ow' on ow'

Given

we can compuie now:

25
Ranzaton

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

But the RelU is not differentiable at 0!

Right. Fudge!

- ‘0’ is the best place for this to occur, because we
don’t care about the result (it is no activation).

- ‘Dead’ perceptrons

- ReLU has unbounded positive response:
- Potential faster convergence / overstep

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).

Note: FPROP and BPROP are dual of each other. E.g.,:

FPROP BPROP
= <=1
- | I
w 1
- ==

COPY
A

26
. f
N Ranzato

Optimization demo

e http://www.emergentmind.com/neural-network

* Thank you Matt Mazur

http://www.emergentmind.com/neural-network

Toy Code (Matlab): Neural Net Trainer

for i = 1 : nr layers - 1
[h{i} Jac{i}] = nonlinearity(W{i} * h{i-1} + b{il});
end
h{nr_ layers-1} = W{nr_layers-1} * h{nr layers-2} + b{nr layers-1};
prediction = softmax(h{l-11});
loss = - sum(sum(log(prediction) .* target)) / batch_size;
dh{l-1} = prediction - target;
for i = nr layers — 1 : -1 : 1
Wgrad{i} = dh{i} * h{i-1}";
bgrad{i} = sum(dh{i}, 2);
dh{i-1} = (W{i}' * dh{i}) .* Jac{i-1};
end
for i = 1 : nr layers - 1
W{i} = W{i} - (lr / batch_size) * Wgrad{i};
b{i} = b{i} - (lr / batch_size) * bgrad{i};
end

28
Ranzaton

Wow

false positives

what class

no good filtr

so misclassified &

Dteenybiscuity

cool kernel

Stochastic Gradient Descent

» Dataset can be too large to strictly apply gradient
descent wrt. all data points.

* Instead, randomly sample a data point, perform
gradient descent per point, and iterate.

* True gradient is approximated only
* Picking a subset of points: “mini-batch”

Randomly initialize starting W and pick learning rate y
While not at minimum:

e Gradient descent

e Shuffle training set
* For each data point i=1...n (maybe as mini-batch) } “Epoch”

Stochastic Gradient Descent

Loss will not always
decrease (locally) as
training data point is

(
o

random.
Still converges over
time.

I I I I I I
] 0o 1000 1500 2000 2500 3000 3500

Wikipedia

Gradient descent oscillations

Wikipedia

Gradient descent oscillations

Slow to
converge to
the (local)
optimum

Wikipedia

Momentum

e Adjust the gradient by a weighted sum of the
previous amount plus the current amount.

L

_ 9
* Without momentum: 0;,, = 0, —)/69

* With momentum (new a parameter):

011 = Bt_y([ae]t 1+[])

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box

Training data Classifier

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box
- also a black art.

http://www.isrtv.com/

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Many approaches and hyperparameters:

Activation functions, learning rate, mini-batch size,
momentum...

Often these need tweaking, and you need to know
what they do to change them intelligently.

Nailing hyperparameters + trade-offs

agokasla .54 pn
uploaded and commented on this image: image.png ~

WOOT! Nailed the hyperparameters. 4 generator updates per discriminator update. Wait extra long before you
initiate the switch.

jamestompkin «.:
Well done - | wonder if we can turn hyperparameter nailing into the next e-5port?

agokasla 4

' | am starting to think that the numeric instability of the model is starting to become a real issue. Lowering the
learning rate could make it more stable, but it would require lowering it by two orders of magnitude which would
make it take 100x longer to train right? =

Lowering the learning rate =
smaller steps in SGD

-Less ‘ping pong’

-Takes longer to get
to the optimum

Wikipedia

Flat

regions in energy landscape

Y — sGb g = SGD
| — Momentum —— Momentum
~ NAG - — NAG
— Adagrad | —— Adagrad
Adadelta Adadelta
Rmsprop 4 Rmsprop
— 2
0

1.0

Problem of fitting

* Too many parameters = overfitting

* Not enough parameters = underfitting
* More data = less chance to overfit

* How do we know what is required?

Regularization

* Attempt to guide solution to not overfit
 But still give freedom with many parameters

Data fitting problem

—
o]
@

g -]
8- ®
9
7 []
G [
V 5. °
4 °
3,.
n ®
2 ®
.1
0
0 1 2 3 4 5
X

[Nielson]

nich is better?
nich is better a priori?

==

10-
?
///1-. II ’
,9/ \ | 8 P
_— . \J 7 ,/"/
./ 6 /./,
/ V s f‘/
-«) .
\ .
|'II N\ // 3 ~ ’
| e e
‘ L,
I| 1 -
I! 1 2 3 14 5 0 .
| X 0 1 2 3
X
9th order polynomial 1t order polynomial

[Nielson]

Regularization

* Attempt to guide solution to not overfit
 But still give freedom with many parameters

* |dea:
Penalize the use of parameters to prefer small weights.

Regularization:

* |dea: add a cost to having high weights

* A = regularization parameter

C=Co+ A Y w

[Nielson]

Both can describe the data...

e ...but one is simpler.

* Occam’s razor:
“Among competing hypotheses, the one with the fewest
assumptions should be selected”

For us:
Large weights cause large changes in behaviour in
response to small changes in the input.

Simpler models (or smaller changes) are more robust
to noise.

Regularization

* |dea: add a cost to having high weights

* A = regularization parameter

C=Co+ A Y w

C = —%Z [yjlﬂﬂ? +(1—yj)111(1—a§')] + A Zwi.
\ o)
f f

Normal cross-entropy Regularization term
loss (binary classes)

[Nielson]

Regularization: Dropout

Our networks typically start with random weights.
Every time we train = slightly different outcome.

* Why random weights?

* If weights are all equal,
response across filters
will be equivalent.

e Network doesn’t train.

mputs < KA

[Nielson]

Regularization

Our networks typically start with random weights.
Every time we train = slightly different outcome.

* Why not train 5 different networks with random
starts and vote on their outcome?
* Works fine!

* Helps generalization because error due to overfitting is
averaged; reduces variance.

Regularization: Dropout

[Nielson]

Regularization: Dropout

At each mini-batch:

Randomly select a subset of neurons.
lgnore them.

On test: half weights outgoing to
compensate for training on half neurons.

Effect:

Neurons become less dependent on
output of connected neurons.
Forces network to learn more robust
features that are useful to more
subsets of neurons.

Like averaging over many different
trained networks with different
random initializations.

Except cheaper to train.

[Nielson]

Many forms of ‘regularization’

* Adding more data is a kind of regularization
* Pooling is a kind of regularization
* Data augmentation is a kind of regularization

