








Perceptron:

This is convolution!
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Shared weights



Filter = ‘local’ perceptron.
Also called kernel.



Yann LeCun’s MNIST CNN architecture





DEMO

http://scs.ryerson.ca/~aharley/vis/conv/

Thanks to Adam Harley for making this.

More here: http://scs.ryerson.ca/~aharley/vis

http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/












Think-Pair-Share

Input size: 96 x 96 x 3

Kernel size: 5 x 5 x 3

Stride: 1 

Max pooling layer: 4 x 4 

Output feature map size?

a) 5 x 5

b) 22 x 22

c) 23 x 23

d) 24 x 24 

e) 25 x 25 

Input size: 96 x 96 x 3

Kernel size: 3 x 3 x 3

Stride: 3

Max pooling layer: 8 x 8

Output feature map size?

a) 2 x 2

b) 3 x 3

c) 4 x 4

d) 5 x 5

e) 12 x 12





Our connectomics diagram

Conv 1
3x3x4
64 filters

Max pooling
2x2 per filter

Conv 2
3x3x64
48 filters

Max pooling
2x2 per filter

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Conv 3
3x3x48
48 filters

Max pooling
2x2 per filter

Conv 4
3x3x48
48 filters

Max pooling
2x2 per filter

Input
75x75x4



Reading 
architecture 
diagrams

Layers
- Kernel sizes
- Strides
- # channels
- # kernels
- Max pooling



AlexNet diagram (simplified)
Input size
227 x 227 x 3

Conv 1
11 x 11 x 3
Stride 4
96 filters

227

227

Conv 2
5 x 5 x 96
Stride 1
256 filters

3x3 
Stride 2

3x3 
Stride 2

[Krizhevsky et al. 2012]

Conv 3
3 x 3 x 256
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
256 filters



Wait, why isn’t it called a correlation neural network?

It could be.

Deep learning libraries implement correlation.

Correlation relates to convolution via a 180deg rotation 
of the kernel. When we learn kernels, we could easily 
learn them flipped.

Associative property of convolution ends up not being 
important to our application, so we just ignore it.

[p.323, Goodfellow]



What does it mean to convolve over 
greater-than-first-layer hidden units?



Yann LeCun’s MNIST CNN architecture



Multi-layer perceptron (MLP)

…is a ‘fully connected’ neural network with non-
linear activation functions.

‘Feed-forward’ neural network

Nielson



Does anyone pass along the weight without an 
activation function?

No – this is linear chaining.

Output vector
Input
vector



Output vector
Input
vector

Does anyone pass along the weight without an 
activation function?

No – this is linear chaining.



Are there other activation functions?

Yes, many.

As long as:

- Activation function s(z) is well-defined 
as z -> -∞ and z -> ∞

- These limits are different

Then we can make a step! [Think visual proof]
It can be shown that it is universal for function 

approximation.



Activation functions:
Rectified Linear Unit
• ReLU



Cyh24 - http://prog3.com/sbdm/blog/cyh_24



Rectified Linear Unit

Ranzato



What is the relationship between SVMs 
and perceptrons?

SVMs attempt to learn the support vectors which 
maximize the margin between classes.



What is the relationship between SVMs 
and perceptrons?

SVMs attempt to learn the support vectors which 
maximize the margin between classes.

A perceptron does not. 
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal 
stability’ is used in SVM:

Perceptron
+ optimal stability
+ kernel trick 
= foundations of SVM



Why is pooling useful again?
What kinds of pooling operations might we consider?



By pooling responses at different locations, 
we gain robustness to the exact spatial 
location of image features.

Useful for classification, when I don’t care 
about _where_ I ‘see’ a feature!

Convolutional 
layer output

Pooling layer 
output



Pooling is similar to downsampling

…except sometimes we 
don’t want to blur,
as other functions might 
be better for classification.

…but on feature maps, 
not the input!





Wikipedia

Max pooling



OK, so what about invariances?

What about translation, scale, rotation?

Convolution is translation equivariant (‘shift-equivariant’) 
– we could shift the image and the kernel would give us a 
corresponding (‘equal’) shift in the feature map.

But! If we rotated or scaled the input, the same kernel would 
give a different response.

Pooling lets us aggregate (avg) or pick from (max) responses, 
but the kernels themselves must be trained and so learn to 
activate on scaled or rotated instances of the object.



Fig 9.9, Goodfellow et al. [the book]

If we max pooled over depth (# kernels)…

Three different 
kernels trained to 
fire on different 
rotations of ‘5’.









I’ve heard about many more terms of jargon!

Skip connections

Residual connections

Batch normalization

…we’ll get to these in a little while.









Training Neural Networks
Learning the weight matrices W



Gradient descent

x

f(x)



General approach

Pick random starting point.

𝑎1 x

f(x)



General approach

Compute gradient at point (analytically or by finite differences)

𝛻 𝑓(𝑎1)

x

f(x)

𝑎1



General approach

Move along parameter space in direction of negative gradient

𝑎2 = 𝑎1 − 𝛾𝛻 𝑓 𝑎1

x

f(x)

𝑎1 𝑎2

𝛾 = amount to move
= learning rate



General approach

Move along parameter space in direction of negative gradient.

𝑎3 = 𝑎2 − 𝛾𝛻 𝑓 𝑎2

x

f(x)

𝑎1 𝑎2

𝛾 = amount to move
= learning rate

𝑎3



General approach

Stop when we don’t move any more.

𝑎𝑠𝑡𝑜𝑝:

𝑎𝑛−1 − 𝛾𝛻 𝑓 𝑎𝑛−1 = 0

x

f(x)

𝑎1 𝑎2𝑎3 𝑎𝑠𝑡𝑜𝑝



Gradient descent

Optimizer for functions.

Guaranteed to find optimum for convex functions.
• Non-convex = find local optimum.

• Most vision problems aren’t convex.

Works for multi-variate functions.
• Need to compute matrix of partial derivatives (“Jacobian”)

x

f(x)



Why would I use this over Least Squares?

If my function is convex, 
why can’t I just use linear least squares?

Analytic solution = normal equations

You can, yes.

𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏



Why would I use this over Least Squares?

But now imagine that I have 1,000,000 data points.

Matrices are _huge_.

Even for convex functions, gradient descent allows 
me to iteratively solve the solution without requiring 
very large matrices.

We’ll see how.



Train NN with Gradient Descent

• 𝑥𝑖 , 𝑦𝑖 = n training examples

• 𝑓 𝒙 = feed forward neural network

• L(x, y; θ) = some loss function

Loss function measures how ‘good’ our network is at 
classifying the training examples wrt. the parameters 
of the model (the perceptron weights).

෍



Train NN with Gradient Descent

Model parameters
(perceptron weights)

𝑎1 𝑎2𝑎3

Loss function
(Evaluate NN
on training data)

𝑎𝑠𝑡𝑜𝑝



utput



What is an appropriate loss?

What if we define an output threshold on detection?

• Classification: compare training class to output class

• Zero-one loss 𝐿 (per class)

Is it good?
• Nope – it’s a step function.

• I need to compute the gradient of the loss.

• This loss is not differentiable, and ‘flips’ easily.

𝑦 = 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙
ො𝑦 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙



Classification as probability

Special function on last layer - ‘Softmax’ σ(): 
“Squashes" a C-dimensional vector O of arbitrary real 
values to a C-dimensional vector σ(O) of real values in the 
range (0, 1) that add up to 1.

Turns the output into a probability distribution on classes.



Classification as probability

Softmax example:
“Squashes" a C-dimensional vector O of arbitrary real 
values to a C-dimensional vector σ(O) of real values in the 
range (0, 1) that add up to 1.

Turns the output into a probability distribution on classes.

O = [2.0, 0.7, 0.2, -0.3, -0.6, -2.5]
Output from perceptron layer
‘distance from class boundary’

σ(O) = [0.616, 0.168, 0.102, 0.061, 0.046, 0.007]



utput

Softmax

Softmax



Cross-entropy loss function

Negative log-likelihood

• Measures difference between
predicted and training 
probability distributions
(see Project 4 for more details)

• Is it a good loss?
• Differentiable
• Cost decreases as 

probability increases

𝐿 𝒙, 𝑦; 𝜽 = −෍

𝑗

𝑦𝑗 log 𝑝(𝑐𝑗|𝒙)

L

p(cj|x)



utput

Softmax



Learning consists of minimizing the loss wrt. parameters 
over the whole training set.

Training



Learning consists of minimizing the loss wrt. parameters 
over the whole training set.

Training



Softmax



Softmax



Derivative of loss wrt. softmax





<- Chain rule from calculus













But the ReLU is not differentiable at 0!

Right. Fudge!

- ‘0’ is the best place for this to occur, because we 
don’t care about the result (it is no activation).

- ‘Dead’ perceptrons

- ReLU has unbounded positive response:
- Potential faster convergence / overstep





Optimization demo

• http://www.emergentmind.com/neural-network

• Thank you Matt Mazur

http://www.emergentmind.com/neural-network






Wow

so misclassified

false positives

no good filtr

what class

cool kernel



Stochastic Gradient Descent

• Dataset can be too large to strictly apply gradient 
descent wrt. all data points.

• Instead, randomly sample a data point, perform 
gradient descent per point, and iterate.
• True gradient is approximated only
• Picking a subset of points: “mini-batch”

Randomly initialize starting 𝑊 and pick learning rate 𝛾

While not at minimum:
• Shuffle training set
• For each data point i=1…n  (maybe as mini-batch)

• Gradient descent
“Epoch“



Stochastic Gradient Descent

Loss will not always 
decrease (locally) as 
training data point is 
random.

Still converges over 
time.

Wikipedia



Gradient descent oscillations

Wikipedia



Gradient descent oscillations

Slow to 
converge to 
the (local) 
optimum

Wikipedia



Momentum

• Adjust the gradient by a weighted sum of the 
previous amount plus the current amount.

• Without momentum:     𝜽𝑡+1 = 𝜽𝑡 − 𝛾
𝜕𝐿

𝜕𝜽

• With momentum (new 𝛼 parameter): 

𝜽𝑡+1 = 𝜽𝑡 − 𝛾 𝛼
𝜕𝐿

𝜕𝜽 𝑡−1
+

𝜕𝐿

𝜕𝜽 𝑡



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Deep learning is: 
- a black box 

ClassifierTraining data



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Deep learning is: 
- a black box 
- also a black art.

http://www.isrtv.com/



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Many approaches and hyperparameters: 

Activation functions, learning rate, mini-batch size, 
momentum…

Often these need tweaking, and you need to know 
what they do to change them intelligently.



Nailing hyperparameters + trade-offs



Lowering the learning rate = 
smaller steps in SGD

-Less ‘ping pong’

-Takes longer to get 
to the optimum

Wikipedia



Flat regions in energy landscape









Problem of fitting

• Too many parameters = overfitting

• Not enough parameters = underfitting

• More data = less chance to overfit

• How do we know what is required?



Regularization

• Attempt to guide solution to not overfit

• But still give freedom with many parameters



Data fitting problem

[Nielson]



Which is better?
Which is better a priori?

1st order polynomial9th order polynomial

[Nielson]



Regularization

• Attempt to guide solution to not overfit

• But still give freedom with many parameters

• Idea: 
Penalize the use of parameters to prefer small weights.



Regularization:

• Idea: add a cost to having high weights

• λ = regularization parameter

[Nielson]

𝜆



Both can describe the data…

• …but one is simpler.

• Occam’s razor:
“Among competing hypotheses, the one with the fewest 
assumptions should be selected”

For us:
Large weights cause large changes in behaviour in 
response to small changes in the input.
Simpler models (or smaller changes) are more robust 
to noise.



Regularization

• Idea: add a cost to having high weights

• λ = regularization parameter

Normal cross-entropy 
loss (binary classes)

Regularization term

[Nielson]

𝜆

𝜆



Regularization: Dropout

Our networks typically start with random weights.

Every time we train = slightly different outcome.

• Why random weights?

• If weights are all equal,
response across filters
will be equivalent.
• Network doesn’t train.

[Nielson]



Regularization

Our networks typically start with random weights.

Every time we train = slightly different outcome.

• Why not train 5 different networks with random 
starts and vote on their outcome?
• Works fine!

• Helps generalization because error due to overfitting is 
averaged; reduces variance.



Regularization: Dropout

[Nielson]



Regularization: Dropout

At each mini-batch:
- Randomly select a subset of neurons.
- Ignore them.

On test: half weights outgoing to 
compensate for training on half neurons.

Effect:
- Neurons become less dependent on 

output of connected neurons.
- Forces network to learn more robust 

features that are useful to more 
subsets of neurons.

- Like averaging over many different 
trained networks with different 
random initializations.

- Except cheaper to train.

[Nielson]



Many forms of ‘regularization’

• Adding more data is a kind of regularization

• Pooling is a kind of regularization

• Data augmentation is a kind of regularization


