
Chapter 3

Sequence Labeling and

HMMs

3.1 Introduction

A sequence-labeling problem has as input a sequence of length n (where n can
vary) x = (x1, . . . , xn) and the output is another sequence y = (y1, . . . , yn),
also of length n, where each yi ∈ Y is the “label” of xi. Many interesting
language-processing tasks can be cast in this framework.

Notation: Using x for the input sequence and y for the label sequence is
fairly standard. Frequently the x is a sequence of words. In this case
we may refer to the words as a terminal sequence as we do in parsing
(see Section 4.1.1).

Part-of-speech tagging (abbreviated POS tagging): Each xi in x is a
word of the sentence, and each yi in y is a part of speech (e.g., ‘NN’ is
common noun, ‘JJ’ is adjective. etc.).

y :
x :

DT
the

JJ
big

NN
cat

VBD
bit

NNP
Sam

.

.

Noun-phrase chunking: Each xi is a word in the sentence and its corre-
sponding yi indicates whether xi is in the beginning, middle or end of
a noun phrase (NP) chunk.

y :
x :

[NP
the

NP
big

NP]
cat bit

[NP]
Sam

.

.

69

70 CHAPTER 3. SEQUENCE LABELING AND HMMS

In this task, ‘[NP’ labels the beginning of a noun phrase — the notation
is intended to conveys the intuitive idea that the labeled word is the
start of an NP. Similarly, ‘[NP]’ labels a word that is both the start
and end of a noun phrase.

Named entity detection: The elements of x are the words of a sentence,
and y indicates whether they are in the beginning, middle or end of
a noun phrase (NP) chunk that is the name of a person, company or
location.

y :
x :

[CO
XYZ

CO]
Corp. of

[LOC]
Boston announced

[PER]
Spade’s resignation

Speech recognition: The elements of x are 100 msec. time slices of acous-
tic input, and those of y are the corresponding phonemes (i.e., yi is
the phoneme being uttered in time slice xi). A phoneme is (roughly)
the smallest unit of sound that makes up words.

In this chapter we introduce hidden Markov models (HMMs), a very
elegant technique for accomplishing such tasks. HMMs were first used for
speech recognition where i is a measure of time. Thus it is often the case
that HMMs are thought of as marching through time — a metaphor we
occasionally use below.

3.2 Hidden Markov models

Recall (ordinary) Markov models. A Markov model (e.g., a bigram model)
generates a string x = (x1, . . . , xn). As in Chapter 1, we imagine that the
string is padded with a start symbol (or start marker x0 = ⊲ and an stop
symbol (or marker) xn+1 = ⊳.

P(x) =
n+1∏

i=1

P(xi | xi−1)

=
n+1∏

i=1

Φxi−1,xi

Here Φx,x′ is a parameter of the model specifying the probability that x is
followed by x′. As before, note the Markov assumption that the next word
depends only on the previous word.

DRAFT of 15 March, 2016, page 70

3.2. HIDDEN MARKOV MODELS 71

In a hidden Markov model (HMM) we observe a string (or observation
sequencex, but in general its label sequence y is hidden (not observed). Just
as in the Markov model above, we imagine that the label sequence y is
padded with begin marker y0 = ⊲ and end marker yn+1 = ⊳. A HMM is a
generative model that jointly generates both the label sequence y and the
observation sequence x. Specifically, the label sequence y is generated by a
Markov model. Then the observations x are generated from the y.

P(y) =
n+1∏

i=1

P(yi | yi−1)

=
n+1∏

i=1

σyi−1,yi

P(x|y) =
n+1∏

i=1

P(xi | yi)

=

n+1∏

i=1

τyi,xi

Notation: We use σy,y′ for the parameter estimating the probability that
label y is followed by label y′ and τy,x for the probability that label y
generates output x. (Think of σ as state-to-state transition and τ as
a state-to-terminal transition.)

We combine these two formulae as follows:

P(x,y) = P(y) P(x | y)

=
n+1∏

i=1

σyi−1,yi τyi,xi
(3.1)

So the generative story for an HMM goes like this: generate the next
label yi with probability P(yi | yi−1) and then the next member of the
sequence xi with probabillity P(xi | yi).

In our study of HMMs we use three different visualizations. The first
is the Bayes-net representation shown in Figure 3.1. In a Bayes net, the
nodes are random variables and the edges between them indicate dependence
relations. If we go back to the time-step metaphor for HMMs, this diagram
can be thought of as follows: at each time i the HMM transitions between
Yi−1 = y and Yi = y′, where the probability of the event is σy,y. The top row

DRAFT of 15 March, 2016, page 71

72 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y1 = V Y3 = NY2 = DY0 = ⊲ Y4 = ⊳

X1 = flour X2 = the X3 = pan

Figure 3.1: The Bayes-net representation of an HMM generating
‘flour the pan’ from the labels ‘V D N’.

of arrows in Figure 3.1 indicates this dependence. Then (during the same
time step) the HMM generates xi according to the probability distribution
for yi. The row of downward arrows indicates this dependence.

A second representation for HMMs is that used to diagram probabilistic
automata, as seen in Figure 3.2. The Bayes net representation emphasizes
what is happening over time. In contrast, the automata representation can
be thought of as showing what is going on “inside” the HMM “machine”.
That is, when looking at the automaton representation we refer to the label
values as the states of the HMM. We use m for the number of states. The
edges between one state and the next are labeled with the corresponding σ
values. The state labeled with the beginning of sentence symbols ⊲ is the
initial state.

So in Figure 3.2 the edge between N and V has the probability of going
from the first of these states to the second, σN,V , which is 0.3. Once we
reach a new state we generate the next visible symbol with some probability
associated with the state. In our automata notation the probabilities of each
output symbol are written inside the state. So in our figure the probability
of generating ‘flour’ from the V state is 0.2.

Example 3.1: What is the probability of the sequence ‘flour pan’ when the state
sequence is < ⊲, V,N⊳ >? (So ‘flour pan’ is a command to coat the pan with flour.)
That is, we want to compute

P(< flour, pan >,< ⊲, V,N, ⊳ >)

From Equation 3.1 we see that

P(< flour, pan >,< V,N, ⊳ >) = σ⊲,V τV,flour σV,N τN,pan σN,⊳

= 0.3 · 0.2 · 0.3 · 0.4 · 0.4.

It should be emphasised that here we are computing the joint probability of the
labeling and the string.

DRAFT of 15 March, 2016, page 72

3.2. HIDDEN MARKOV MODELS 73

1.0D

the 0.7

a 0.3

V

buy 0.4

eat 0.3

flour 0.2

sell 0.1

N

buy 0.2

flour 0.4

pan 0.4

⊳⊲

0.3

0.3

0.4

0.4
0.3

0.3

0.3

0.3

0.4

Figure 3.2: Example of HMM for POS tagging ‘flour pan’, ‘buy flour’

The third of our visual representations is the trellis representation. The
Bayes net representation shows what happens over time, and the automata
representation shows what is happening inside the machine. The trellis
representation shows both. Here each node is a pair (y, i) where y ∈ Y is a
hidden label (or state) and i ∈ 0, . . . , n+1 is a position of a word. So at the
bottom of Figure 3.3 we have the sequence of words going from left to right.
Meanwhile we have (almost) a separate row for each state (label). (We let
the start and stop states share a row.) The edge from (y, i− 1) to (y′, i) has
weight σy,y′ τy′,xi

, which is the probability of moving from state y to y′ and
emitting xi.

In the sections that follow we look at several algorithms for using HMMs.
The most important, Viterbi decoding, comes first. The Viterbi algorithm
finds the most probable sequence of hidden states that could have generated
the observed sequence. (This sequence is thus often called the Viterbi label-
ing.) The next two, which find the total probability of an observed string
according to an HMM and find the most likely state at any given point, are
less useful. We include them to motivate two very important ideas: forward
and backward probabilities. In the subsequent section, the use of forward

DRAFT of 15 March, 2016, page 73

74 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y1 = ‘N’

Y1 = ‘V’ Y2 = ‘V’

Y2 = ‘N’

Y3 = ⊳Y0 = ⊲

X1 = flour X2 = pan

Figure 3.3: The trellis representation of an HMM generating ‘flour pan’

and backward probabilities is required for adapting the EM algorithm to
HMMs.

3.3 Most likely labels and Viterbi decoding

In our introduction to HMMs we saw that many interesting problems such
as POS tagging can be thought of as labeling problems. We then introduced
HMMs as a way to represent a labeling problem by associating, probabilis-
tically, a label (or state) Yi with each input Xi. However, actually to use an
HMM for, say, POS tagging, we need to solve the following problem: given
an an HMM (σ, τ) and an observation sequence x, what is the most likely
label sequence ŷ?

ŷ = argmax
y

P(y | x)

= argmax
y

P(x,y)

Simply put, the problem of POS tagging is: given a sequence of words, find
most likely tag sequence.

In principle we could solve this by enumerating all possible y and finding
the one that maximizes P(x,y). Unfortunately, the number of possible
y grows exponentially with length of sentence n. Assume for the sake of
argument that every word in English has two and only two possible tags.
Then a string of length one has two possible sequences, a sequence of two
words has 2·2 possible state sequences, and a sequence of n words has 2n

state sequences. One of your authors looked at the New York Times on the
day he wrote this paragraph and the first sentence of the lead article had 38

DRAFT of 15 March, 2016, page 74

3.3. MOST LIKELY LABELS AND VITERBI DECODING 75

words. 238 is approximately 1012, a trillion. As you can imagine, the naive
algorithm is not a practical option.

The solution is dynamic programming. Dynamic programming is the
technique of saving partial solutions to problems to avoid computing them
over and over again. The particular algorithm is the Viterbi Algorithm,
discovered by Andrew Viterbi in 1967. It is often called the Viterbi decoder
for much the same reason that doing actual machine translation is called
“decoding”.

To begin, let’s solve a simpler problem, finding the probability P(x, ŷ)
of the most likely solution ŷ.

Notation: yi,j = (yi, . . . , yj) is the subsequence of y from yi to yj .

As we do frequently in both HMM’s and (in the next chapter) probabilis-
tic context-free grammars, we need to solve a slightly more general probelm
— finding the probability of the most likely solution for the prefix of x up
to position i that ends in state y,

µy(i) = max
y,i

P(x1,i, Yi = y). (3.2)

The basic idea is that we compute the µy(i)s starting on left and working
our way to the right. At the far left,

µ⊲(0) = 1.0 (3.3)

That is, the maximum probability of “ending up” at the start state at time
zero is 1.0 (since there is no other option).

We next go from time i− 1 to i as follows:

µy(i) =
m

max
y′=1

µy′(i− 1)σy′,yτy,xi
(3.4)

Eventually we will derive this, but first let’s get a feeling for why it is true.
Figure 3.4 shows a piece of a trellis in detail. In particular we are looking at
the possible transitions from the m states at time i−1 to the particular state
y at time i. At the bottom we show that the HMM outputs are Xi−1 = xi−1

and Xi = xi. Each of the arcs is labeled with the state-to-state transition
probability σyi,y.

Each of the Yi−1 is labeled with the maximum probability the string
could have and end up in that state, µy(i − 1). These have already been
computed. Now, the label subsequence of maximum probability at time
i must have come about by first going through, say, Yi−1 = y′ and then

DRAFT of 15 March, 2016, page 75

76 CHAPTER 3. SEQUENCE LABELING AND HMMS

µy1
(i− 1)

Yi−1 = y2

Yi−1 = ym
µym

(i− 1)

Xi−1 = xi−1

Yi = y

Xi = xi

Yi−1 = y1

µy2
(i− 1)

σy1,yτy,xi

σym,yτy,xi

••••

••

•

σy2,yτy,xi

Figure 3.4: A piece of a trellis showing how to compute µy(i) if all of the
µy′(i− 1) are known.

Y0 = ⊲
µ⊲(0) = 1

µN (1) = .12

Y1 = ‘V’

X1 = ‘flour’

µV (1) = .06

Y1 = ‘N’ Y2 = ‘N’
µN (2) = .0144

X2 = ‘pan’

Y3 = ⊳
µ3,⊳ = .00576

Figure 3.5: The trellis for ‘flour pan’ showing the µy(i)’s

DRAFT of 15 March, 2016, page 76

3.3. MOST LIKELY LABELS AND VITERBI DECODING 77

ending up at yi. Then for this path the probability at time i is the maximum
probability at Yi−1 = y′, times the transition probability to state y. Thus
Equation 3.4 says to find the Yi−1 = y′ that maximizes this product.

Example 3.2: Figure 3.5 shows the (almost) complete µy(i) computation for the
‘flour pan’ sentence according to the HMM shown in Figure 3.5. We ignore the state
‘D’. Since ‘D’ can generate only the words ‘a’ and ‘the’ and neither of these words
appear in our “sentence”, all paths going through ‘D’ must have zero probability
and thus cannot be maximum probability paths.

As already mentioned, the computation starts at the left by setting µ⊲(0) = 1.
Moving to word 1, we need to compute µN (1) and µV (1). These are particularly
easy to calculate. The µs require finding the maximum over all states at position
0. But there is only one such state, namely ⊲. Thus we get:

µN (1) = µ⊲(0) τ⊲,N σN,flour

= 1 ◦ 0.3 ◦ 0.4

= 0.12

A similar situation holds for µV (1) except that the probability of flour as a verb
is only 0.2 so the value at the verb node is 0.06.

We now move on to i = 2. Here there is only one possible state with a nonzero
value, namely ‘N’. However, Y2 = ‘N’ has two possible predecessors at i = 1, ‘N’
and ‘V’. When we do the calculations we find that the maximum path probability
at i = 1 comes from ‘N’ with values

µN (2) = µN (1) τN,N σN,pan

= 0.12 ◦ 0.3 ◦ 0.4

= 0.0144

We leave the calculation at i = 3 to the reader.

At each stage we need look backward only one step because the new
maximum probability must be the continuation from the maximum proba-
bility at one of the previous states. Thus the computation for any one state
at time i requires m processing steps, one for each possible previous state.
Since there are n + 1 time steps (one for each word plus one step for ⊳),
the total time is proportional to m2(n + 1). The runtime of the Viterbi
algorithm is linear in n, the length of the string. This is much better than
the obvious algorithm, which as we saw takes exponential time.

At this point, we hope that Equation 3.4 showing how to reduce the µ
calculation at i to the µ calculations at i−1 seems reasonably intuitive. But
we now prove it formally for those readers who like things reduced to hard

DRAFT of 15 March, 2016, page 77

78 CHAPTER 3. SEQUENCE LABELING AND HMMS

mathematics.

µy(i) = max
y0,i

P(x1,i, y0,i−1, Yi = y)

= max
y0,i

P(x1,i−1, y0,i−2, Yi−1 = y′, xi, Yi = y)

= max
y0,i

P(x1,i−1, y0,i−2, Yi−1 = y′)

P(Yi = y | x1,i−1, y0,i−2, Yi−1 = y′)

P(xi | x1,i−1, y0,i−2, Yi = y, Yi−1 = y′))

We start by expanding things out. In the second line above, we separate out
the x and y at position i− 1. We then use the chain rule to turn the single
probability into a product of three probabilities. Next we reduce things
down.

µy(i) = max
y0,i

P(x1,i−1, y0,i−2Yi−1 = y′)P(Yi = y | Yi−1 = y′)P(xi | y)

= max
y0,i

P(x1,i−1, y0,i−2Yi−1 = y′)σy′,yτy,xi

= max
y0,i

(
max
y0,i−1

P(x1,i−1, y0,i−2, Yi−1 = y′)

)
σy′,yτy,xi

= max
y0,i

µy′(i− 1)σyi−1,yiτyi,xi

=
m

max
y′=1

µy′(i− 1)σy′,yτy,xi

In the top line we simplify by noting that the next state is dependent only
on the last state, and the next output just on the next state. In line 2, we
substitute the corresponding model parameters for these two probabilities.
In line 3, since the first term does not involve the last state yi, we look for the
maximum over y0,i−1. Then in line 4 we note that the previous term in the
parentheses is simply the definition of µy′(i− 1) and make the substitution.
Finally, in line 5 we replace the maximum over the entire y sequence with
simply the maximum over y′ since it is the only variable left in the equation.
Phew!

It’s easy to extend this algorithm so that it finds the most likely label
sequence ŷ as well as its probability. The basic idea is to keep a back pointer
ρy(i) that indicates which y′ maximizes (3.4) for each i and y, i.e.:

ρy(i) = argmax
y′

µy′(i− 1) σy′,y τy,xi
, i = 2, . . . , n

DRAFT of 15 March, 2016, page 78

3.4. FINDING SEQUENCE PROBABILITIES WITH HMMS 79

Y0 = ⊲
µ0,⊲ = 1

µ1,‘N’ = .12

Y1 = ‘V’

X1 = ‘flour’

µ
1,‘V’ =, 06

Y1 = ‘N’ Y2 = ‘N’
µ2,‘N’ = .0144

X2 = ‘pan’

Y3 = ⊳
µ3,⊳ = .00576

Figure 3.6: Figure 3.5 with back pointers added.

We can then read off the most likely sequence ŷ from right to left as
follows:

ŷn+1 = ⊳

ŷi = ρŷi+1(i+ 1)

That is, the last state in the maximum probability sequence must be ⊳. Then
the most likely state at i is indicated by the back pointer at the maximum
probability state at i+ 1.

Figure 3.6 shows Figure 3.5 plus the back pointers.

3.4 Finding sequence probabilities with HMMs

In the last section we looked at finding the most probable hidden sequence
of states for a given HMM output. In this section we want to compute the
total probability of the output. As in the last section, at first glance this
problem looks intractable as it seems to require summing over all possible
hidden sequences. But again dynamic programming comes to the rescue.

We wish to compute the probability of generating the observed sequence
and ending up in the state ⊳.

P(x1,n+1, Yn+1 = ⊳)

We do this by computing something slightly more general, the so-called
forward probability, αy(i). This is the probability of the HMM generating

DRAFT of 15 March, 2016, page 79

80 CHAPTER 3. SEQUENCE LABELING AND HMMS

αy1
(i− 1)

Yi−1 = y2

Yi−1 = ym
αym

(i− 1)

Yi = y

Yi−1 = y1

αy2
(i− 1)

σy1,y

σy2,y

σym,y

••••

••

•

Xi−1 = xi−1 Xi = xi

Figure 3.7: Piece of a trellis showing how forward probabilities are calcu-
lated

the symbols x1,i and ending up in state yi.

αy(i) = P(x1,i, Yi = y) (3.5)

This is more general because the number we care about is simply:

P(x1,n+1, Yn+1 = ⊳) = α⊳(n+ 1)

This follows immediately from the definition of the forward probability.

The reason why we recast the problem in this fashion is that forward
probabilities can be computed in time linear in the length of the sequence.
This follows from a mild recasting of the problem in the last section where
we looked at the maximum path probability to any point. Here we compute
sum rather than max. As before, we start the computation at the left-hand
side of the trellis with

α⊲(0) = 1 (3.6)

Also as before, the key intuition for the recursion step comes from looking
at a piece of the trellis, this time shown in Figure 3.7. We assume here that
all the αy′(i − 1) have been computed and we now want to compute αy(i).

DRAFT of 15 March, 2016, page 80

3.4. FINDING SEQUENCE PROBABILITIES WITH HMMS 81

Y0 = ⊲
α⊲(0) = 1

αN (1) = .12

Y1 = ‘V’
αV (1) = .06

Y1 = ‘N’ Y2 = ‘N’
αN (2) = .0216

Y3 = ⊳
α⊳(3) = .00864

X1 = ‘flour’ X2 = ‘pan’

Figure 3.8: Forward probability calculations for ‘flour pan’ HMM

This time we could reach Yi = y from any of the previous states, so the total
probability at Yi is the sum from each of the possible last states. The total
path probability coming from one of these states is thus:

αy′(i− 1)σy′,yτy,xi

This is the probability of first getting to y′, times the transition probability
of then getting to y, times the probability of generating xi. Doing the sum
gives us:

αy(i) =
∑

y′

αy′(i− 1)σy′,yτy,xi
(3.7)

Example 3.3: Figure 3.8 shows the computation of forward probabilities for our
‘flour pan’ example. At position zero α⊲(0) is always one. At position one only
one previous state is possible, so the sum in Equation 3.7 is a sum over one prior
state. The most interesting calculation is for Y2 = ‘N’. From the higher path into it
(from ‘N’) we get 0.12 (the previous forward probability) times 0.3 (the transition
probability) times 0.4 (the probability of generating the word ‘pan’, for 0.0144. In
much the same way, the lower path contributes 0.06 times 0.3 times 0.4=0.0072.
So the forward probability at this node is 0.0216.

Deriving Equation 3.7 is relatively straightforward: add y′ through re-
verse marginalization, reorder terms, and replace the terms by the corre-

DRAFT of 15 March, 2016, page 81

82 CHAPTER 3. SEQUENCE LABELING AND HMMS

sponding α, σ, and τs.

αy(i) = P(x1,i, Yi = y)

=
∑

y′

P(x1,i−1, Yi−1 = y′, Yi = y, xi)

=
∑

y′

P(x1,i−1, y
′)P(y | y′, x1,i−1)P(xi | y, y

′, x1,i−1)

=
∑

y′

P(x1,i−1, y
′)P(y | y′)P(xi | y)

=
∑

y′

αy′(i− 1)σy′,yτy,xi

3.5 Backward probabilities

In this section we introduce backward probabilities. . . We care about back-
ward probabilities primarily because we need them for our polynomial time
EM algorithm for estimating HMM parameters. However, for the purposes
of this section we motivate them in a simpler fashion.

Suppose we are building an HMM part-of-speech tagger, and we intend
to evaluate it by asking what percentage of the words are assigned the correct
part of speech. Clearly the way to do this is to pick at each word the part
of speech that maximizes the following probability:

P(Yi = y | x).

At first glance, one might think that the Viterbi algorithm does this. How-
ever, as the following example shows, this is not the case.

Example 3.4: Let us suppose the sentence ‘Flour pans like lightning’ has the
following three possible part-of-speech sequences along with their associated prob-
abilities:

Flour pans like lightning
N V A N 0.11
N N V N 0.1
N N A N 0.05

It is immediately obvious that the first of these is the Viterbi analysis and thus
has the most likely sequence of tags. However, let us now ask: given the entire
sentence, what is the mostly likely tag for each word? The answer is the third one!
To see this, first note that there is no competition at the first or fourth words. For
the second word, the paths that go through ‘N’ sum to 0.15, while those that go
through ‘V’ sum to 0.11. For position 3 we have ‘V’ at 0.1 and ‘A’ at 0.16.

DRAFT of 15 March, 2016, page 82

3.5. BACKWARD PROBABILITIES 83

To efficiently compute P(Yi = y | x) we introduce backward probabilities
defined as follows:

βy(i) = P(xi+1,n+1 | Yi = y)

That is, βy(i) is the probability of generating the outputs from xi+1 to the
end of the sentence assuming you start the process with Yi = y.

At first glance this seems a pretty arbitrary definition, but it has all sorts
of nice properties. First, as we show, it too can be computed using dynamic
programing in time linear in the length of the sentence. Secondly, if we
know both the forward and backward probabilities, we can easily compute
P(Yi = y | x):

P(Yi = y | x) =
αy(i)βy(i)

α⊳(n+ 1)
. (3.8)

This may be one case where the best way to come to believe this is just
to see the derivation.

P(Yi = y | x) =
P(x1,n+1, Yi = y)

P(x1,n+1)

=
P(x1,i, Yi = y)P(xi+1,n+1 | x1,i, Yi = y)

P(x1,n+1)

=
P(x1,i, Yi = y)P(xi+1,n+1 | Yi = y)

P(x1,n+1)

=
αy(i)βy(i)

α⊳(n+ 1)

We start out with the definition of conditional probability. In the second line
we rearrange some terms. The third line simplifies the last probability in the
numerator using the fact that in a Markov model, once we know the state
Yi = y, anything that happened before that is independent of what comes
after, and the last line substitutes the forward and backward probabilities
for their definitions. We also use the fact that α⊳(n+ 1) = P(x).

As with forward probabilities, we can compute the β values incremen-
tally. However, there is a reason these are called backward probabilities. Now
we start at the end of the string and work backward. First, at i = n+ 1,

β⊳(n+ 1) = 1. (3.9)

At position n+ 1 there is nothing left to generate but the empty string. Its
probability given we are in state ⊳ is 1.

DRAFT of 15 March, 2016, page 83

84 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y0 = ⊲
β⊲(0) = 0.00864

βN (1) = 0.048

Y1 = ‘V’
βV (1) = 0.048

Y1 = ‘N’ Y2 = ‘N’
βN (2) = 0.4

Y3 = ⊳
β⊳(3) = 1.0

X1 = ‘flour’ X2 = ‘pan’

Figure 3.9: Computing backward probabilities for the ‘flour pan’ example

We now show that if we can compute the βs at position i + 1, then we
can compute it at i.

βy(i) = P(xi+1,n+1 | Yi = y)

=
∑

y′

P(Yi+1 = y′, xi+1, xi+2,n+1 | Yi = y)

=
∑

y′

P(y′ | y)P(xi+1 | y, y
′)P(xi+2,n+1 | y, y

′, xi=1)

=
∑

y′

P(y′ | y)P(xi+1 | y
′)P(xi+2,n+1 | y

′)

=
∑

y′

σy,y′τy′,xi+1
βy′(i+ 1) (3.10)

The idea here is very much like what we saw for the forward probabilities.
To compute βy(i), we sum over all the states that could follow Yi = yi. To
be slightly more specific, consider Yi+1 = y′. We assume we know the
probability of generating everything after that, βy′(i+ 1). To get βy(i), we
also need to multiply in the probability of the symbol generated at i + 1,
τy′,xi+1 , and the probability of getting to y′ from y, σy,y′.

Example 3.5: Figure 3.9 shows the backward probabilities for the ‘flour pan’
example. As it should, β⊳(3) = 1.0. Looking at the previous state, βV (2) = 0.4.
This is the product of β⊳(3) = 1.0, τ⊳,⊳ = 1, and σV,⊳ = 0.4.

DRAFT of 15 March, 2016, page 84

3.6. ESTIMATING HMM PARAMETERS 85

Next we can compute P(Y2 = ‘N’ | ‘flour pan’):

P(Y2 = V | ‘flour pan’) =

=
0.216 · 0.4

0.00864
= 1.0.

This is as it should be, since there is no alternative to Y2 = ‘V’. In the same way,
we can compute the probability of being in states ‘N’ and ‘V’ in position one as
2/3 and 1/3 respectively.

When computing forward and backward probabilities there are a few
computations uou can use to check that you are doing it correctly. First, as
can be verified from Figures 3.8 and 3.9, α⊳(n + 1) = β⊳(0), and both are
equal to the total probability of the string according to the HMM.

Second, for any i, ∑

y′

P(Yi = y′ | x) = 1.

That is, the total probability of being in any of the states given x must sum
to one.

3.6 Estimating HMM parameters

This section describes how to estimate the HMM parameters σ and τ from
training data that consists of output strings x and their labels y (in the case
of visible training data) or output strings x alone (if the labels are hidden).
In both cases, we treat the entire training data as one or two long strings.
In practice, it is standard actually to break the data down into individual
sentences. But the math is basically the same in both cases.

3.6.1 HMM parameters from visible data

In this section we assume that our training data is visible or fully observed,
i.e., it consists of the HMM output x = (x1, . . . , xn) (e.g., words) and their
corresponding labels y = (y1, . . . , yn) (e.g., parts of speech tags). The like-
lihood is then:

L(σ, τ) = P(x,y)

=
n+1∏

i=1

σyi−1,yiτyi,xi
.

DRAFT of 15 March, 2016, page 85

86 CHAPTER 3. SEQUENCE LABELING AND HMMS

In this case, the maximum likelihood estimates for the parameters σ and
τ are just their relative frequencies:

σ̂y,y′ =
ny,y′(y)

ny,◦(y)

τ̂y,x =
ny,x(x,y)

ny,◦(x,y)

where

ny,y′(y) =
n+1∑

i=1

[[
yi−1 = y, yi = y′

]]
,

ny,x(x,y) =
n∑

i=1

[[yi = y, xi = x]] .

That is, ny,y′(y) is the number of times that a label y′ follows y, and
ny,x(x,y) is the number of times that a label y labels an observation x.

In practice you want to smooth τ̂ to deal with sparse-data problems such
as unknown and low-frequency words. This is similar to what we did for
language models in Section 1.3.5.

3.6.2 HMM parameters from hidden data

In this case our training data consists only of the output strings x, and we
are not told the labels y; they are invisible or hidden. We can still write the
likelihood, which (as usual) is the probability of the data.

L(σ, τ) = P(x) (3.11)

=
∑

y

P(x,y)

=
∑

y

(
n∏

i=1

σyi−1,yiτyi,xi

)

where the variable y in the sum ranges over all possible label sequences.
The number of such label sequences grows exponentially in the length of the
string x, so it is impractical to enumerate the y except for very short strings
x.

There is no simple closed-form expression for the maximum likelihood
estimates for σ and τ when the label sequence is not given, but since this is

DRAFT of 15 March, 2016, page 86

3.6. ESTIMATING HMM PARAMETERS 87

a hidden data problem we can use the expectation maximization algorithm.

Recall the general idea of the EM algorithm. We are given observations
x and assume we have estimates σ(0), τ (0) of the true parameters σ, τ .
We use these estimates to find estimates for how often each of the HMM
transitions are taken while processing x. We then estimate σ and τ from
these expected values using the maximum likelihood estimator described in
the previous section, producing new estimates σ(1) and τ (1). That is,

σ
(1)
y,y′ =

E[ny,y′ | x]

E[ny,◦ | x]

τ (1)y,x =
E[ny,x | x]

E[ny,◦ | x]

where the expected counts

E[ny,y′ | x] =
∑

y

ny,y′(y)P(y | x), and

E[ny,x | x] =
∑

y

ny,x(x,y)P(y | x)

are calculated using the probability distribution defined by σ(0) and τ (1).
In theory we could calculate these expectations by explicitly enumerating

all possible label sequences y, but since the number of such sequences grows
exponentially with the length of x, this is infeasible except with extremely
small sequences.

3.6.3 The forward-backward algorithm

This section presents a dynamic programming algorithm known as the forward-
backward algorithm for efficiently computing the expected counts required
by the EM algorithm. It is so named because the algorithm requires the
computating both the forward and backward probabilities.

First we consider E[ny,x | x], the expectation of how often state y gener-
ates symbol x. Here we actually compute something more precise than we
require here, namely the expectation that y generates x at each point in the
string. Once these are computed, we get the expectations we need for the
M-step by summing over all positions i. Given the forward and backward
probabilities this turns out to be quite easy.

E[ni,y,x | x] = [[Xi = x]] P(Yi = y | x) (3.12)

= [[Xi = x]]
αy(i)βy(i)

α⊳(n+ 1)
(3.13)

DRAFT of 15 March, 2016, page 87

88 CHAPTER 3. SEQUENCE LABELING AND HMMS

Yi = yi
αyi

(i)
Yi+1 = yi+1
βyi+1

(i+ 1)

Xi = x1
Xi+1 = xi+1

τyi+1,xi+1

σyi,yi+1

Figure 3.10: Detailed look at a transition with forward and backward prob-
abilities

The first line says that if at position i if we do not generate x, then the
expected number of times here is zero, and otherwise it is the probability
that we were in state y when we generated x. The second line follows from
Equation 3.8 in which we showed how to compute this probability from our
forward and backward probabilities.

Next we consider the expectation of a transition from y to y′ at point i:

E[ni,y,y′ | x] = P(Yi = y, Yi+1 = y′ | x). (3.14)

This says that the expectation of making the transition from y to y′ at point
i is the probability, given the visible data, that at i we are in state y and at
i+ 1 we are in state y′. By the definition of conditional probability we can
rewrite this as:

P(Yi = y, Yi+1 = y′ | x1,n+1) =
P(Yi = y, Yi+1 = y′, x1,n+1)

P(x1,n+1)
(3.15)

We already know how to compute the denominator — it is just the total
probability of the string, α⊳(n+ 1) — so we concentrate on the numerator.
This is the probability of our HMM generating the sentence, but restricted
to paths that go through the states Yi = yi and Yi+1 = yi+1. This situation
is shown in Figure 3.10 along with the forward and backward probabilities
at these positions in the trellis.

Now we claim — as is proved shortly — that:

P(Yi = y, Yi+1 = y′, x1,n+1) = αy(i)σy,y′ , τy′,xi+1
βy′(i+ 1) (3.16)

Here, the left-hand side is the numerator in Equation 3.15, the probability
of generating the entire sentence restricting consideration to paths going
through the transition from Yi = yi to Yi+1 = yi+1. To understand the right-
hand side, look again at Figure 3.10. Computing this probability requires
first getting the probability of arriving at Yi = yi. This is the forward

DRAFT of 15 March, 2016, page 88

3.6. ESTIMATING HMM PARAMETERS 89

probability, α. Then we need the probability of getting from yi to yi+1 (the
σ term) while generating xi+1 (the τ term). Finally, given we are now at
Yi+1 = yi+1, we need the probability of generating the rest of the sentence
(the backward probability).

Substituting Equation 3.16 into Equation 3.15 gives us:

E[ni,y,y′ | x] = P(Yi = y, Yi+1 = y′ | x1,n+1)

=
αy(i)σy,y′ , τy′xi+1

βy′(i+ 1)

α⊳(n+ 1)
(3.17)

We now prove the critical part of this.

P(Yi = y, Yi+1 = y′, x1,n+1) = P(x1,i, Yi = y, Yi+1 = y′, xi+1, xi+2,n+1)

= P(x1,i, y)P(y
′ | x1,i, y)P(xi+1 | y

′, x1,i, y)

P(xi+2,n+1 | y
′, x1,i+1, y)

= P(x1,i, y)P(y
′ | y)P(xi+1 | y

′)P(xi+2,n+1 | y
′)

= P(x1,i, y)σy,y′ , τy′xi+1
P(xi+2,n+1 | y

′)

= αy(i)σy,y′ , τy′xi+1
βy′(i+ 1)

This sequence of transformations is similar in spirit to the one we used to
derive our recursive formula for µ. Here we first rearrange some terms. Next
we use the chain rule, and then apply the Markov assumptions to the various
probabilities. Last, we substitute the forward and backward probabilities for
their definitions.

3.6.4 The EM algorithm for estimating an HMM

At this point we have shown how to compute the forward and backward
probabilities and how to use them to compute the expectations we need for
the EM algorithm. Here we put everything together in the forward-backward
algorithm.

We start the EM algorithm with parameter estimates σ(0) and τ (0).
Each iteration t = 0, 1, 2, . . . consists of the following steps:

1. Set all expected counts E[ny,y′ |x] and E[ny,x|x] to zero

2. (E-step) For each sentence

(a) Using σ(t) and τ (t), calculate the forward probabilities α and
the backward probabilities β using the recursions (3.7–3.6) and
(3.10–3.9).

DRAFT of 15 March, 2016, page 89

90 CHAPTER 3. SEQUENCE LABELING AND HMMS

(b) Calculate the expected counts E[ni,y,y′ |x] and E[ni,y,x|x] using
(3.17) and (3.13) respectively, and accumulate these into E[ny,y′ |x]
and E[ny,x|x].

3. (M-step) Compute σ(t+1) and τ (t+1) using these expected counts

3.6.5 Implementing the EM algorithm for HMMs

There are a few things to keep in mind when implementing the algorithm
just described. If all the values in σ(0) and τ (0) are the same then the HMM
is completely symmetric and the expected counts for the states are all the
same. It’s standard to break this symmetry by adding a small random
number (or noise) to each of the values in σ(0) and τ (0). So rather than
setting them all to v, set them to rv for, random r such that 0.95 ≤ r ≤ 1.05.

Another way to think of this is to imagine that we are attempting to learn
word parts of speech from unlabeled data. Initially we have one state in the
HMM for each POS-tag. The HMM must eventually learn that, say, τN,dog

should be high, while τV,dog should be much lower (the verb ‘dog’ means
roughly the same thing as ‘follow’, but it is not common). But naturally,
as far as the HMM is concerned, it does not have states N , or V , it just
has, say, 50 states representing 50 parts of speech. If we start with all the
probabilities equal, then there is no reason to associate any particular state
with any particular tag. This situation is called a saddle point. While the
likelihood of the data is low with these probabilities, there is no reason for
EM to move in any particular direction, and in fact, it does not change
any of the probabilities. This is much like the philosophical example known
as Buridan’s ass. Buridan’s ass is standing exactly halfway between two
exactly equal bales of hay. It cannot decide which way to go because it is
equally beneficial to go either way, and eventually it starves to death. If we
break the symmetry by moving either bale by a very small amount, the ass
survives.

As we mentioned at the end of Section 3.5, there are several relations
between forward and backward probabilities that you should compute to
check for bugs. Here is another one:

∑

y

αi(y)βi(y) = P(x)for all i = 1, . . .

Be sure to understand how this follows directly from Equation 3.8.

DRAFT of 15 March, 2016, page 90

3.7. MT PARAMETERS FROM FORWARD-BACKWARD 91

3.7 MT parameters from forward-backward

Section 2.3 showed how IBM model 2 improves over model 1 insofar as it no
longer assigns equal probability to all alignments. Instead, the probability of
an alignment was the product of δk,l,m.js where l andm are the lengths of the
English and French sentences and the delta gives us the probability of the
kth French word being aligned with the jth English and thus model 2 still
incorporates the assumption that each alignment decision is independent of
the others.

Generally this is a bad assumption. Words in sentences are bundled into
phrases, and typically if one word of a phrase gets moved during translation
the others will go along with it. For example, both English and French allow
prepositional phrases to appear at the beginning or ending of a sentence:

Columbus discovered America in 1492
In 1492 Columbus discovered America

If we were to align these two sentences we would get < 4, 5, 1, 2, 3 >. The
model 2 probability would be much too low because, e.g., the probability of
aligning position 2 in the second sentence with position 5 in the first would
be small, even though the previous word had been “moved” to position 4
and thus the next, being in position 5, should be high. A better model
would instead condition an alignment ak on the alignment of the previous
French word ak−1.

HMMs are a natural fit for this problem. Our program creates a new
HMM specifically for for each training E/F pair. Figure 3.11 shows an
HMM created to learn the translation parameters for translating “Not bad”
to “Pas mal.”

The hidden HMM states are the alignment positions, so each one is
dependent on the previous. The visible sequence is the French sentence.
Thus σj,k is the probability that the next French word will align with the
kth English word, given that the previous word aligned with the jth. The
emission probabilities τy,x are the probability that ey will generate yx, the
French word.

The HMM in Figure 3.11 starts in state ⊲. Then for the first French
word the HMM transitions into state Y1 or Y2. To transition into, say, Y2
at position one is to guess that the first French word ‘Pas’ is generated by
(aligned with) the second English (‘bad’). If at position two the HMM goes
to Y1 then the second French word is aligned with the first English one. The
σ parameters are the probabilities of these transitions. Note that because
this HMM was devised for this particular example, both states at position

DRAFT of 15 March, 2016, page 91

92 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y1 = 2

X1 = ‘pas’

Y1 = 1 Y2 = 1

X2 = ‘mal’

Y3 = ⊳Y0 = ⊲

σ⊲,1

σ⊲,2

σ1,1

σ2,1

σ2⊳

σ1,⊳

τ‘not’,‘pas’
τ‘not’,‘pas’

Y2 = 2

σ1,2

Figure 3.11: An HMM to learn parameters for ‘Pas mal’ to ‘Not bad’

one can only generate the first word of this French sentence, namely ‘Pas’
and the probability of its doing so are the translation probabilities — e.g.,
τbad,Pas.

However, even though this HMM was created for this particular training
example, the parameters that are learned are general. So, for example, the
two sentences here are both of length two. Thus the transition from, say,
state Y1 at position one to Y2 at position two will add its expectation to
δ1,2,2,2. These are the new distortion parameters for the HMM translation
model. This particular parameter is the probability of a French word being
aligned with English word 2, given that the previous French was aligned with
English word 1 and both sentences are of length two. Other examples in the
parallel corpus where both sentences are of length two will also contribute
their expectations to this δ.

Because the assumptions behind this model are much closer to reality
than those underlying IBM 2, the parameters learned by this model are
better than those of IBM 2, and the math is only slightly more complicated.
So now MT systems start by estimating τs from IBM 1, and then improve
on these using the HMM approach.

There is one minor flaw in the model as we have presented it. What if
the previous word was aligned with the null English word? What should
our new σ0,y be? One solution would to use the last non-null position. A
slightly more complicated solution would be to have a second set of English
“positions” that are used for this situation. So, e.g., σ3′,4 would be the
probability that the next French word will align with e4 given that the

DRAFT of 15 March, 2016, page 92

3.8. SMOOTHING WITH HMMS 93

previous word was aligned with e0 and the last non-null alignment was with
e3.

3.8 Smoothing with HMMs

In Chapter 1 we encountered the problem of smoothing language-modeling
probability distributions in the presence of sparse data. In particular, since a
maximum-likelihood distribution assigns a zero probability to any word not
seen in the training data, we explored the smoothed distribution obtained by
assigning a pseudo-count α to the count of every possible word. (In practice
we had only one unseen word, ∗U∗, but this need not be the case.) If we
gave all words the same pseudo-count we arrived at the following equation:

P
θ̃
(W=w) = θ̃w =

nw(d) + α

n◦(d) + α|W|

Then to find an appropriate α we looked at the probability a particular
lambda would assign to some held-out data (the likelihood of the data).
Last we suggested using line-search to maximize the likelihood.

In this section we show how using HMMs allow us to find these pa-
rameters more directly. First we note that our smoothing equation can be
rewritten as a mixture model — specifically as a mixture of the maximum-
likelihood distribution P

θ̂
(W) and the uniform distribution P1(W) that as-

signs the same probability to each word w ∈ W.

P
θ̃
(W=w) = θ̃w =

nw(d) + α

n◦(d) + α|W|

= λ
nw(d)

n◦(d)
+ (1− λ)

1

W

= λP
θ̂
(W) + (1− λ)P1(W) (3.18)

where the uniform distribution is P1(w) = 1/|W| for all w ∈ W and the
mixing parameter λ ∈ [0, 1] satisfies:

λ =
n◦(d)

n◦(d) + α|W|

To see that this works, substitute the last equation into (3.18).
Now consider the HMM shown in Figure 3.12. It has the property that

Equation 3.18 gives the probability this HMM assigns to the data. Intu-
itiviely it says that at any point one generates the next symbol either by

DRAFT of 15 March, 2016, page 93

94 CHAPTER 3. SEQUENCE LABELING AND HMMS

λ

(1− λ)

(1− λ)

(1− λ)

⊲

λ

λ

p(w) = θ̂

p(w) = 1
|V|

Figure 3.12: The HMM coresponding to Equation 3.18

choosing to go to the top sate with probability λ and then generating the
word according to the maximum likelihood extimate θ̂w, or to the bottom
one and assigning a probability according to the uniform distribution 1

W| .

Example 3.6: Suppose we set λ to 0.8, the next word is “the”, θ̂the = .08 and
number of words in our vocabularay is 10000. Then generating “the” via the top
state has a probability of 0.16 while via the lower one has probability 2.0 · 10−6.
For our unknown word, ∗U∗, the probabilities are zero and 2.0 · 10−6.

Since λ is the transition probability of an HMM, we can now use Equation
3.17 iteratively to find a value that maximizes the probability of the data.

While this will work fine, for this HMM it is overkill. A bit of reflection
will show that we can simplify the math enormously. We needed forward
and backward probabilities because the state transltion used affects not only
the current x, but the y we end up in after the transition, and this in turn,
means that the rest of the string will get a different probability according
to the model. But this is not the case for the HMM of Figure 3.12. Yes, we
end up in different states, but this has no effect on the probability of the
rest of the string. The next word will also either be generated by one of the
two states (top and bottom, or T and B) and the probabilitity of getting to
those states is the same no matter where we started. So the only difference
in expectation is that due to the probability of the word we generate at this

DRAFT of 15 March, 2016, page 94

3.9. PART-OF-SPEECH INDUCTION 95

step. So the increment in exepectaions due to the ith word for the transition
from T to T (which is the same as the transition from B to T) is

E[ni,T,T | x] = E[ni,B,T | x] =
λθ̂wi

λθ̂wi
+ (1− λ) 1

|W|

.

When we end up in the lower state we have:

E[ni,T,B | x] = E[ni,B,B | x] =
(1− λ) 1

|W|

λθ̂wi
+ (1− λ) 1

|W|

Example 3.7: Again suppose we set λ to 0.8, the next word is “the”, θ̂the = .08
and number of words in our vocabularay is 10000. The expectation for the transition
to state T when generating “the” is (.08/(.08+2.0 ·10−6)) ≈ 1.0, and for transition
to state B is 2.010−6/(.08 + 2.0 · 10−6) ≈ 2.510−5. For ∗U∗the expectation of
transitioning to T is zero (= 0/(0 + 2 · 10−6)) and has an expectation of one for
transitioning to state B (= 210−6/(0 + 2 · 10−6)).

3.9 Part-of-speech induction

Part-of-speech (POS) tagging is a standard example for HMM’s and in the
next section we discuss building a tagger when one has training data on
which to base the HMM parameters. Typically this works quite well, with
accuracies in the middle 90% range.

Here we discuss using EM and the forward backward algorithm for doing
POS tagging when we do not have supervision — just plain English text.
This works much less well. The model we discuss here achieves about 60%
accuracy. The purpose of this section is to understand this difference, and
more generally, to give the reader some idea of when the EM algorithm
might not give you what you want.

The model is straightforward. We start the HMM with all our τs and σs
approximately equal. We say “approximately” because of the saddle point
problem discussed in Section 3.6.5. Also, because our testing data is labeled
with 45 parts of speech, we start with 45 states. We then apply the forward-
backward algorithm to adjust the parameters to fit the data. In so doing
EM will drive the parameters apart.

The first step in understanding the low score is to look at the problem
from the machine’s point of view. In essence, it will achieve the maximum
likelihood for the training data when the words in each class are as similar

DRAFT of 15 March, 2016, page 95

96 CHAPTER 3. SEQUENCE LABELING AND HMMS

7 DET The “ But In It He A And For That They As At Some This If
18 . . ? ! ... in Activity Daffynition of -RCB- to -RRB- students

6 NNP Mr. New American Wall National John Dow Ms. Big Robert
36 NNP Corp. Inc. & York Co. ’s Exchange Stock Street Board Bank

8 VBD said says is say ’s and reported took think added was makes
45 VBD about at rose up fell down was closed net only a income dropped

19 CD 1 few 100 2 10 15 50 11 4 500 3 30 200 5 20 two
44 NN year share week month 1988 months Friday 30 1987 September

5 DET a in this last next Oct. “ Nov. late Sept. fiscal one early recent
32 DET the a an its his their any net no some this one that another
42 DET the its a chief his this “ other all their each an which such U.S.

Figure 3.13: Some HMM states and the most common words in them

as possible based upon the neighboring words. But similar in what way?
There is nothing saying that the classes have to look anything like POS
classes. Actually, from this point of view 60% is pretty impressive.

Figure 3.13 shows 11 of the 45 resulting states using forward-backward
and repeating until the log-likelihood of the data barely increases at each
iteration. This table may be a bit overwhelming at first glance, but it
is worth study because it shows all the creative ways EM can raise the
probability of the data, many with only marginal relation to part-of-speech
tagging.

The first column is the state number — as just discussed this is arbitrary.
Which words end up in which numbered states depends only on how the
states are randomly initialized. By the way, this also means that different
random initializations will give different accuracies, and the classes will be
differently organized. Remember, EM is a hill-climbing algorithm and the
hill it climbs depends on where it starts. The accuracy, however, never
moves much from the 60% figure.

The second column gives the part-of-speech tag that is most common
for the words in this set. We shown two sets each where the most common
is ‘NNP’ (proper noun) and ‘NN’ (common noun) and four for ‘DET’ (de-
terminer). In fact, eight of our states were assigned to DET. We will come
back to this point.

Finally, each row has up to fifteen words that are “common” for this

DRAFT of 15 March, 2016, page 96

3.9. PART-OF-SPEECH INDUCTION 97

state. In particular, for each state s we found the fifteen words w that
maximized the term

ns,w + α

n◦,w + 45α
.

If we did not have the add-α smoothing terms this equation would find the
w’s that are most probable given the state. These would mostly be words
that only appear once or twice, and only in s. These, however, would not
really be indicative of what the state really “means.”. Smoothing with α
(we used α = 5) prevents this.

The first row in Table 3.13 (class 7) is made up of words and punctuation
that begin sentences — e.g. words w for which σ⊲,w is large. It is assigned
to the class DET just because “The” happens to be the most common word
in the class by far. Symmetrically, class 18 is words that end sentences. The
class of final punctuation marks is named ‘.’ so that is the part of speech
assignment for class 18. But we can see that the HMM is more interested in
things that end sentences than things that are final punctuation because the
“right round bracket” symbol is in the class. (It is written ‘-RRB-’ rather
than ‘)’ because in the Penn Treebank parentheses are used to annotate
trees.)

Continuing down the list, classes 6 and 36 are both assigned to proper
nouns (NNP), but 6 is made up of words that typically start names, while
36 end names. Similarly we show two classes of past-tense verbs, each of
which show a sort of within-class semantic similarity. Class 8 has many
acts of thinking and saying, while Class 45 has things that happen to stock
prices. As you should now expect, the HMM groups them for more prosaic
reasons — the first are often followed by open-quotation marks, the second
by numbers (as in “fell 19 %”).

We leave classes 44 and 19 to the reader, and move on to three more
classes that all get associated with determiners. The first of these (5) only
has one DET, namely ‘a’, but the other words have no common part of
speech, and ‘a’s are ubiquitous, so it controls the class. In fact, these happen
to be words that precede those in class 44 (mostly date words). But classes
32 and 42 have such overlap of determiners that it is hard to see why they
are separate. An examination of the state transitions show that class 32
determiners are followed by common nouns, while those in 42 are followed
by adjectives.

The point of this exercise is to disabuse the reader of the idea that max-
imizing the likelihood of the data will necessary make good things happen.
It also should convince you that the forward-backward algorithm is really
good at what it does: it will come up with ways to increase probability that

DRAFT of 15 March, 2016, page 97

98 CHAPTER 3. SEQUENCE LABELING AND HMMS

we would never think of.
There are more successful approaches to unsupervised POS induction —

currently the best achieve in the middle 70% range. As you might expect
given the eight classes assigned to determiners, one very effective technique
is to require each word type to appear in only one class. This is some-
what limiting, but most words have only one possible POS tag, and those
with more than one typically have only one that is common (e.g., ‘can’), so
mistakes due to such a restriction are comparatively rare.

3.10 Exercises

Exercise 3.1: The following tagging model has the two words ‘boxes’ and
‘books’, and the two POS tags ‘noun’ and ‘verb’ (plus the end-of-sentence
delimiters ⊲ and ⊳).

P(noun | ⊲) = 1/2 P(verb | ⊲) = 1/2 P(boxes | noun) = 1/2
P(noun | noun) = 1/2 P(verb | noun) = 1/6 P(boxes | verb) = 3/4
P(noun | verb) = 1/2 P(verb | verb) = 1/6 P(books | noun) = 1/2
P(⊳ | noun) = 1/3 P(⊳ | verb) = 1/3 P(books | verb) = 1/4

(a) What is the total probability of the output sequence ‘boxes books’? Show
your work. (b) What is the probability of the most likely tag sequence for
‘boxes books’? Show your work.

Exercise 3.2: Suppose for some HMM when applied to the sequence x,
P(x | y) = 0 for all y =< · · · , Yi = a, · · · >. That is, any sequence of states
y that goes through state a at position i has zero joint probability with the
string x. Does it follow that τa,xi

= 0?

Exercise 3.3: Example 3.4 shows that the Viterbi sequence of labels is
not always the sequence of labels that individually have the highest label
probability. Note that in this example no single labeling has the majority of
the total sentence probability (i.e., the probability of the sentence is more
than twice the probability of the Viterbi labeling). Is this a coincidence of
the numbers we picked, or a necessary feature of such examples? To put
this another way, if the Viterbi sequence is not the same as the sequence of
individually hightest probability labels, does this imply that the probability
of Viterbi sequence is less than the total probability of all the other possible
sequences? Explain.

Exercise 3.4: What does the presence of the word “Daffynition” in class
18 in Figure 3.13 suggest about how it is used in the Wall Street Journal?

DRAFT of 15 March, 2016, page 98

3.11. PROGRAMMING PROBLEMS 99

3.11 Programming problems

Problem 3.1: Part-of-speech tagging using HMMs

The data directory contains files wsj2-21.txt and wsj22.txt. Each
file contains one sentence per line, where each line is a sequence of pairs
consisting of a word and its part of speech. Take a look at the files so
you know what the precise format is. wsj22.txt has been pre-filtered so
that words that don’t appear in wsj2-21.txt have been replaced with the
unknown word symbol ∗U∗.

The assignment directory contains the script templates tag and score.
Follow the directions in the templates carefully.

1. Find maximum-likelihood estimates for the parameters σ̂ and τ̂ from
the file wsj2-21.txt. Note that you’ll have to smooth the parameter
estimates for τy,∗U∗; at this stage you can just give these a pseudo-
count of 1.

2. Implement the Viterbi decoding algorithm and find the most likely tag
sequence ŷ for each sentence x in wsj22.txt. Compute the percentage
of words for which their Viterbi tag is in fact the correct tag.

3. Now we’ll try to find a better estimate for τy,·UNK·. We note that words
that appear once in our training data wsj2-21.txt are only one oc-
currence away from not occurring at all. So suppose we go through
our training data and change all words that only appear once to ∗U∗.
We can now compute τy,∗U∗ just like everything else and there is no
need to smooth. Also note that, say, τNN,∗U∗ can (and will) differ from
τDT,∗U∗. In general this should increase accuracy because it correctly
models the fact that an ∗U∗ is more likely to be a noun than a deter-
miner. Implement this and report your new accuracy. (One problem
with this is that you lose the part-of-speech tags for all these words.
Fortunately they are rare words, so the odds are that few of them will
appear in your test data. However, if this bothers you, you can count
each word with one token twice, once as itself, once as ∗U∗.)

3.12 Further reading

HMMs are used not just in computational linguistics, but in signal pro-
cessing, computational biology, analysis of music, hand-writing recognition,
land-mine detection, you name it.

DRAFT of 15 March, 2016, page 99

