
Chapter 1

Language modeling and
probability

1.1 Introduction

Which of the following is a reasonable English sentence: ‘I bought a rose’ or
‘I bought arose’1?

Of course the question is rhetorical. Anyone reading this text must
have sufficient mastery of English to recognize that the first is good English
while the second is not. Even so, when spoken the two sound the same,
so a computer dictation system or speech-recognition system would have a
hard time distinguishing them by sound alone. Consequently such systems
employ a language model, which distinguishes the fluent (i.e., what a native
English speaker would say) phrases and sentences of a particular natural
language such as English from the multitude of possible sequences of words.

Virtually all methods for language modeling are probabilistic in nature.
That is, instead of making a categorical (yes-or-no) judgment about the
fluency of a sequence of words, they return (an estimate of) the probabil-
ity of the sequence. The probability of a sequence is a real number be-
tween 0 and 1, and high-probability sequences are more likely to occur than
low-probability ones. Thus a model that estimates the probability that a
sequence of words is a phrase or sentence permits us to rank different se-
quences in terms of their fluency; it can answer the question with which we
started this chapter.

In fact, probabilistic methods are pervasive in modern computational
linguistics, and all the major topics discussed in this book involve proba-

1 c©Eugene Charniak, Mark Johnson 2013

7

8 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

bilistic models of some kind or other. Thus a basic knowledge of probability
and statistics is essential and one of the goals of this chapter is to provide
a basic introduction to them. In fact, the probabilistic methods used in the
language models we describe here are simpler than most, which is why we
begin this book with them.

1.2 A Brief Introduction to Probability

Take a page or two from this book, cut them into strips each with exactly
one word, and dump them into an urn. (If you prefer you can use a trash
can, but for some reason all books on probability use urns.) Now pull out a
strip of paper. How likely is it that the word you get is ‘the’? To make this
more precise, what is the probability that the word is ‘the’?

1.2.1 Outcomes, Events and Probabilities

To make this still more precise, suppose the urn contains 1000 strips of pa-
per. These 1000 strips constitute the sample space or the set of all possible
outcomes, which is usually denoted by Ω (the Greek letter omega). In dis-
crete sample spaces such as this, each sample x ∈ Ω is assigned a probability
P(x), which is a real number that indicates how likely each sample is to
occur. If we assume that we are equally likely to choose any of the strips
in the urn, then P(x) = 0.001 for all x ∈ Ω. In general, we require that the
probabilities of the samples satisfy the following constraints:

1. P(x) ∈ [0, 1] for all x ∈ Ω, i.e., probabilities are real numbers be-
tween 0 and 1, and

2.
∑

x∈Ω P(x) = 1, i.e., the probabilities of all samples sum to one.

Of course, many of these strips of paper have the same word. For exam-
ple, if the pages you cut up are written in English the word ‘the’ is likely to
appear on more than 50 of your strips of paper. The 1000 strips of paper
each correspond to different word tokens or occurrence of a word in the urn,
so the urn contains 1000 word tokens. But because many of these strips con-
tain the same word, the number of word types (i.e., distinct words) labeling
these strips is much smaller; our urn might contain only 250 word types.

We can formalize the distinction between types and tokens by using the
notion of random events. Formally, an event E is a set of samples, i.e.,

DRAFT of 27 January, 2016, page 8

1.2. A BRIEF INTRODUCTION TO PROBABILITY 9

E ⊆ Ω, and the probability of an event is the sum of the probabilities of the
samples that constitute it:

P(E) =
∑
x∈E

P(x)

We can treat each word type as an event.

Example 1.1: Suppose E‘the’ is the event of drawing a strip labeled ‘the’, that
|E‘the’| = 60 (i.e., there are 60 strips labeled ‘the’) and that P(x) = 0.001 for all
samples x ∈ Ω. Then P(E‘the’) = 60× 0.0001 = 0.06.

1.2.2 Random Variables and Joint Probabilities

Random variables are a convenient method for specifying events. Formally, a
random variable is a function from the sample space Ω to some set of values.
For example, to capture the type-token distinction we might introduce a
random variable W that maps samples to the words that appear on them,
so that W (x) is the word labeling strip x ∈ Ω.

Given a random variable V and a value v, P(V=v) is the probability of
the event that V takes the value v, i.e.:

P(V=v) = P({x ∈ Ω : V (x) = v})

Notation: It is standard to capitalize random variables and use lower-cased
variables as their values.

Returning to our type-token example, P(W=‘the’) = 0.06. If the random
variable intended is clear from the context, sometimes we elide it and just
write its value, e.g., P(‘the’) abbreviates P(W=‘the’). Similarly, the value
of the random variable may be elided if it is unspecified or clear from the
context, e.g., P(W) abbreviates P(W=w) where w ranges over words.

Random variables are useful because they let us easily construct a variety
of complex events. For example, suppose F is the random variable mapping
each sample to the first letter of the word appearing in it and S is the random
variable mapping samples to their second letters (or the space character if
there is no second letter). Then P(F=‘t’) is the probability of the event in
which the first letter is ‘t’ and P(S=‘h’) is the probability of the event in
which the second letter is ‘h’.

Given any two events E1 and E2, the probability of their conjunction
P(E1, E2) = P(E1 ∩ E2) is called the joint probability of E1 and E2; this is
the probability of E1 and E2 occurring simultaneously. Continuing with our

DRAFT of 27 January, 2016, page 9

10 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

example, P(F=‘t’, S=‘h’) is the joint probability that the first letter is ‘t’
and that the second letter is ‘h’. Clearly, this must be at least as large as
P(‘the’).

1.2.3 Conditional and marginal probabilities

Now imagine temporarily moving all the strips whose first letter is ‘q’ into
a new urn. Clearly this new urn has a different distribution of words from
the old one; for example, P(F=‘q’) = 1 in the sample contained in the new
urn. The distributions of the other random variables change as well; if our
strips of paper contain only English words then P(S=‘u’) ≈ 1 in the new
urn (because ‘q’ is almost always followed by ‘u’ in English).

Conditional probabilities formalize this notion of temporarily setting the
sample set to a particular set. The conditional probability P(E2 | E1) is the
probability of event E2 given that event E1 has occurred. (You can think
of this as the probability of E2 given that E1 is the temporary sample set).
P(E2 | E1) is defined as:

P(E2 | E1) =
P(E1, E2)

P(E1)
if P(E1) > 0

and is undefined if P(E1) = 0. (If it is impossible for E1 to occur then
it makes no sense to speak of the probability of E2 given that E1 has oc-
curred.) This equation relates the conditional probability P(E2 | E1), the
joint probability P(E1, E2) and the marginal probability P(E1). (If there are
several random variables, then the probability of a random variable V on
its own is sometimes called the marginal probability of V , in order to distin-
guish it from joint and conditional probabilities involving V .) The process
of adding up the joint probabilities to get the marginal probability is called
marginalization.

Example 1.2: Suppose our urn contains 10 strips of paper (i.e., our sample space
Ω has 10 elements) that are labeled with four word types, and the frequency of each
word is as follows:

word type frequency
‘nab’ 1
‘no’ 2
‘tap’ 3
‘tot’ 4

Let F and S be random variables that map each strip of paper (i.e., sample) to the
first and second letters that appear on them, as before. We start by computing the

DRAFT of 27 January, 2016, page 10

1.2. A BRIEF INTRODUCTION TO PROBABILITY 11

marginal probability of each random variable:

P(F=‘n’) = 3/10

P(F=‘t’) = 7/10

P(S=‘a’) = 4/10

P(S=‘o’) = 6/10

Now let’s compute the joint probabilities of F and S:

P(F=‘n’, S=‘a’) = 1/10

P(F=‘n’, S=‘o’) = 2/10

P(F=‘t’, S=‘a’) = 3/10

P(F=‘t’, S=‘o’) = 4/10

Finally, let’s compute the conditional probabilities of F and S. There are two ways
to do this. If we condition on F we obtain the following conditional probabilities:

P(S=‘a’ | F=‘n’) = 1/3

P(S=‘o’ | F=‘n’) = 2/3

P(S=‘a’ | F=‘t’) = 3/7

P(S=‘o’ | F=‘t’) = 4/7

On the other hand, if we condition on S we obtain the following conditional prob-
abilities:

P(F=‘n’ | S=‘a’) = 1/4

P(F=‘t’ | S=‘a’) = 3/4

P(F=‘n’ | S=‘o’) = 2/6

P(F=‘t’ | S=‘o’) = 4/6

Newcomers to probability sometimes have trouble distinguishing between
the conditional probabilities P(A | B) and P(B | A), seeing both as express-
ing a correlation between A and B. However, in general there is no reason
to think that they will be the same. In Example 1.2

P(S=‘a’ | F=‘n’) = 1/3

P(F=‘n’ | S=‘a’) = 1/4

The correct way to think about these is that the first says, “if we restrict
consideration to samples where the first letter is ‘n’, then the probability of

DRAFT of 27 January, 2016, page 11

12 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

that the second letter is ‘a’ is 1/3.” However, if we restrict consideration to
those samples whose second letter is ‘a’, then the probability that the first
letter is ‘n’ is 1/4. To take a more extreme example, the probability of a
medical diagnosis D being “flu”, given the symptom S being “elevated body
temperature”, is small. In the world of patients with high temperatures,
most just have a cold, not the flu. But vice versa, the probability of high
temperature given flu is very large.

1.2.4 Independence

Notice that in the previous example, the marginal probability P(S=‘o’) of
the event S=‘o’ differs from its conditional probabilities P(S=‘o’ | F=‘n’)
and P(S=‘o’ | F=‘t’). This is because these conditional probabilities restrict
attention to different sets of samples, and the distribution of second letters
S differs on these sets. Statistical dependence captures this interaction.
Informally, two events are dependent if the probability of one depends on
whether the other occurs; if there is no such interaction then the events are
independent.

Formally, we define independence as follows. Two events E1 and E2 are
independent if and only if

P(E1, E2) = P(E1) P(E2).

If P(E2) > 0 it is easy to show that this is equivalent to

P(E1 | E2) = P(E1)

which captures the informal definition of independence above.

Two random variables V1 and V2 are independent if and only if all of the
events V1=v1 are independent of all of the events V2=v2 for all v1 and v2.
That is, V1 and V2 are independent if and only if:

P(V1, V2) = P(V1) P(V2)

or equivalently, if P(V2) > 0,

P(V1 | V2) = P(V1)

Example 1.3: The random variables F and S in Example 1.2 on page 10 are
dependent because P(F | S) 6= P(F). But if the urn contained only four strips
of paper showing ‘nab’, ‘no’, ‘tap’ and ‘tot’, then F and S would be independent
because P(F | S) = P(F) = 1/2, no matter what values F and S take.

DRAFT of 27 January, 2016, page 12

1.2. A BRIEF INTRODUCTION TO PROBABILITY 13

1.2.5 Expectations of random variable

If a random variable X ranges over numerical values (say integers or reals),
then its expectation or expected value is just a weighted average of these
values, where the weight on value X is P(X). More precisely, the expected
value E[X] of a random variable X is

E[X] =
∑
x∈X

x P(X=x)

where X is the set of values that the random variable X ranges over. Condi-
tional expectations are defined in the same way as conditional probabilities,
namely by restricting attention to a particular conditioning event, so

E[X | Y=y] =
∑
x∈X

x P(X=x | Y=y)

Expectation is a linear operator, so if X1, . . . , Xn are random variables then

E[X1 + . . .+Xn] = E[X1] + . . .+ E[Xn]

Example 1.4: Suppose X is a random variable generated by throwing a fair
six-sided die. Then the expected value of X is

E[X] =
1

6
+

2

6
+ . . .+

6

6
= 3.5

Now suppose that X1 and X2 are random variables generated by throwing two fair
six-sided dice. Then the expected value of their sum is

E[X1 +X2] = E[X1] + E[X2] = 7

In this book we frequently deal with the expectation of an event V , such
as that in some translation the English word ‘cat’ is translated to the French
word ‘chat.’ In this case the “value” of the event occurring is one, and thus
the expectation of how often the event occurs is simply the sum over each
member of the sample space (in our case each pair English word, French
word) of the probably of the event occurring. That is:

E[V] =
∑
x∈X

1 · P(X=x)

=
∑
x∈X

P(X=x)

DRAFT of 27 January, 2016, page 13

14 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

1.3 Modeling documents with unigrams

Let’s think for a moment about language identification — determining the
language in which a document is written. For simplicity, let’s assume we
know ahead of time that the document is either English or French, and we
need only determine which; however the methods we use generalize to an
arbitrary number of languages. Further, assume that we have a corpus or
collection of documents we know are definitely English, and another corpus
of documents that we know are definitely French. How could we determine
if our unknown document is English or French?

In cases like this, where we are going to use corpora (one corpus, two
corpora) as examples to help us solve a problem, we call them the training
data (or training corpus). The unknown-language document will be (part
of) the testing data. If we want our results to be indicative of what we would
see in a real life application, it is important that we collect the testing data
separately from the training data. That is, if we are using a several months
of newspaper articles for training, we would pick several different months of
testing. We often talk about testing on “unseen” data, by which we mean
that our program was not built arround the exact examples we use to test
it.

Returning to language identification, if our unknown language document
actually appeared in one of the two corpora then we could use that fact
to make a reasonably certain identification of its language. But this is
extremely unlikely to occur; there are just too many different documents

1.3.1 Documents as sequences of words

The basic idea we pursue here is to break the documents in each of the
corpora into smaller sequences and compare the pieces that occur in the
unknown language document with those that occur in each of the two known
language corpora.

It turns out that it is not too important what the pieces are, so long as
there is likely to be a reasonable overlap between the pieces that occur in the
unknown language document and the pieces that occur in the corresponding
corpus. We follow most work in computational linguistics and take the pieces
to be words, but nothing really hinges on this (e.g., you can also take them
to be characters).

Thus, if W is the set of possible words then a document is a sequence
w = (w1, . . . , wn) where n (the length of the document) may vary and each
piece wi ∈ W. (Note that we generally use bold-faced symbols (e.g., w) to

DRAFT of 27 January, 2016, page 14

1.3. MODELING DOCUMENTS WITH UNIGRAMS 15

denote vectors or sequences.)

A few technical issues need to be dealt with when working on real doc-
uments. Punctuation and typesetting information can either be ignored
or treated as pseudo-words (e.g., a punctuation symbol is regarded as a
one-character word). Exactly how to break up a text (a process called tok-
enization) into words can also be an issue: it is sometimes unclear whether
something is one word or two: for example, is ‘doesn’t’ a single word or is
it ‘does’ followed by ‘n’t’? In many applications it does not matter exactly
what you do so long as you are consistent.

It also often simplifies matters to assume that the set of possible words
is finite. We do so here. You might think this is reasonable — after all, a
dictionary seems to list all the words in a language — but if we count things
such as geographical locations and names (especially company and product
names) as words (and there’s no reason not to), then it is clear that new
words are being coined all the time.

A standard way to define a finite set of possible words is to collect all
the words appearing in your corpus and declare this set, together with a
novel symbol (say ‘∗U∗’, but any novel sequence of characters will do) called
the unknown word, to be the set of possible words. That is, if W0 is the
set of words that appear in your corpus, then the set of possible words is
W = W0 ∪ {∗U∗}. Then we preprocess every document by replacing every
word not in W0 with ‘∗U∗’. The result is a document in which every word
is a member of the finite set of possibilities W.

1.3.2 Language models as models of possible documents

Now we set about building our language models. Formally a language model
is a probability distribution over possible documents that specifies the prob-
ability of that document in the language (as opposed to all the other docu-
ments that one might encounter).

More specifically, let the sample space be the set of possible documents
and introduce two random variables N andW , whereW = (W1, . . . ,WN) is
the sequence of words in the document and N is its length (i.e., the number
of words). A language model is then just a probability distribution P(W).

But which one? Ideally we would like P(W) to be the “true” distribution
over documents W , but we don’t have access to this. (Indeed, it is not
clear that it even makes sense to talk of a “true” probability distribution
over English documents.) Instead, we assume we have a training corpus
of documents d that contains representative samples from P(W) and that
we use to learn P(W). We also assume that P(W) is defined by a specific

DRAFT of 27 January, 2016, page 15

16 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

mathematical formula or model. This model has some adjustable or free
parameters θ, and by changing these we define different language models.
We use d to estimate or set the values of the parameters θ in such a way
that the resulting language model P(W) is (we hope) close to the true
distribution of documents in the language.

Notation: We designate model parameters with Greek letters. However,
we use Greek letters for other things as well. The meaning should
always be clear.

1.3.3 Unigram language models

Finding the best way to define a language model P(W) and to estimate its
parameters θ is still a major research topic in computational linguistics. In
this section we introduce an extremely simple class of models called unigram
language models. These are not especially good models of documents, but
they can often be good enough to perform simple tasks such as language
identification. (Indeed, one of lessons of computational linguistics is that a
model doesn’t always need to model everything in order to be able to solve
many tasks quite well. Figuring out which features are crucial to a task and
which can be ignored is a large part of computational linguistics research.)

A unigram language model assumes that each word Wi is generated
independently of the other words. (The name “unigram” comes from the
fact that the model’s basic units are single words; in section 1.4.1 on page 24
we see how to define bigram and trigram language models, whose basic
units are pairs and triples of words, respectively.) More precisely, a unigram
language model defines a distribution over documents as follows:

P(W) = P(N)

N∏
i=1

P(Wi) (1.1)

where P(N) is a distribution over document lengths and P(Wi) is the proba-
bility of word Wi. You can read this formula as an instruction for generating
a document W : first pick its length N from the distribution P(N) and then
independently generate each of its words Wi from the distribution P(Wi). A
model that can be understood as generating their data in this way is called
a generative model. The “story” of how we generate a document by first
picking the length, etc., is called a generative story about how the document
could have been created.

A unigram model assumes that the probability of a word P(Wi) does
not depend on its position i in the document, i.e., P(Wi=w) = P(Wj=w)

DRAFT of 27 January, 2016, page 16

1.3. MODELING DOCUMENTS WITH UNIGRAMS 17

for all i, j in 1, . . . , N . This means that all words are generated by the same
distribution over words, so we only have one distribution to learn. This
assumption is clearly false (why?), but it does make the unigram model
simple enough to be estimated from a modest amount of data.

We introduce a parameter θw for each word w ∈ W to specify the prob-
ability of w, i.e., P(Wi=w) = θw. (Since the probabilities of all words must
sum to one, it is necessary that the parameter vector θ satisfy

∑
w∈W θw =

1.) This means that we can rewrite the unigram model (1.1) as follows:

P(W=w) = P(N)

N∏
i=1

θwi . (1.2)

We have to solve two remaining problems before we have a fully specified
unigram language model. First, we have to determine the distribution P(N)
over document lengths N . Second, we have to find the values of the param-
eter vector θ that specifies the probability of the words. For our language
identification application we assume P(N) is the same for all languages, so
we can ignore it. (Why can we ignore it if it is the same for all languages?)

1.3.4 Maximum likelihood estimates of unigram parameters

We now turn to estimating the vector of parameters θ of a unigram language
model from a corpus of documents d. The field of statistics is concerned
with problems such as these. Statistics can be quite technical, and while
we believe every practicing computational linguist should have a thorough
grasp of the field, we don’t have space for anything more than a cursory
discussion here. Briefly, a statistic is a function of the data (usually one
that describes or summarizes some aspect of the data) and an estimator for
a parameter is a statistic whose value is intended to approximate the value
of that parameter. (This last paragraph is for those of you who have always
wondered where in “probability and statistics” the first leaves off and the
second begins.)

Returning to the problem at hand, there are a number of plausible es-
timators for θ, but since θw is the probability of generating word w, the
“obvious” estimator sets θw to the relative frequency of word w in the cor-
pus d. In more detail, we imagine that our corpus is one long sequence of
words (formed by concatenating all of our documents together) so we can
treat d as a vector. Then the maximum likelihood estimator sets θw to:

θ̂w =
nw(d)

n◦(d)
(1.3)

DRAFT of 27 January, 2016, page 17

18 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

Notation: nw(d) is the number of times that word w occurs in d and
n◦(d) =

∑
w∈W nw(d) is the total number of words in d. More gener-

ally, ◦ as a subscript to n is always a count over all possibilities.

Notation: Maximum likelihood distributions are indicated by a “caret”
over the parameter name.

Example 1.5: Suppose we have a corpus size n◦(d) = 107. Consider two words,
‘the’ and ‘equilateral’ with counts 2·105 and 2, respectively. Their maximum like-
lihood estimates are 0.02 and 2·10−7.

We shall see there are good reasons not to use this estimator for a un-
igram language model. But first we look more closely at its name — the
maximum likelihood estimator for θ.

The maximum likelihood principle is a general method for deriving esti-
mators for a wide class of models. The principle says: to estimate the value
of a parameter θ from data x, select the value θ̂ of θ that makes x as likely as
possible. In more detail, suppose we wish to estimate the parameter θ of a
probability distribution Pθ(X) given data x (i.e., x is the observed value for
X). Then the maximum likelihood estimate θ̂ of θ is value of θ that max-
imizes the likelihood function Lx(θ) = Pθ(x). (The value of the likelihood
function is equal to the probability of the data, but in a probability distri-
bution the parameter θ is held fixed while the data x varies, while in the
likelihood function the data is fixed while the parameter is varied. To take
a more concrete example, imagine two computer programs. One, F(date),
takes a date and returns the lead article in the New York Times for that
date. The second, G(newspaper), returns the lead article for June 2, 1946
for whatever newspaper is requested. These are very different programs, but
they both have the property that F(6.2.1946)=G(NYT).)

To get the maximum likelihood estimate of θ for the unigram model, we
need to calculate the probability of the training corpus d. It is not hard to
show that the likelihood function for the unigram model (1.2) is:

Ld(θ) =
∏
w∈W

θnw(d)
w

where nw(d) is the number of times word w appears in d, and we have
ignored the factor concerning the length of d because it does not involve θ
and therefore does not affect θ̂. To understand this formula, observe that it
contains a factor θw for each occurrence of word w in d.

You can show using multivariate calculus that the θ̂ that simultaneously
maximizes LD and satisfies

∑
w∈W θw = 1 is nothing other than the relative

frequencies of each w, as given in (1.3).

DRAFT of 27 January, 2016, page 18

1.3. MODELING DOCUMENTS WITH UNIGRAMS 19

Example 1.6: Consider the “document” (we call it ♥) consisting of the phrase
‘I love you’ one hundred times in succession:

L♥(θ) = (θi)
ni(♥)·(θ‘love’)

n‘love’(♥)·(θ‘you’)
n‘you’(♥)

= (θi)
100·(θ‘love’)

100·(θ‘you’)
100

The θws in turn are all 100/300=1/3, so

L♥(θ) = (1/3)100·(1/3)100·(1/3)100

= (1/3)300

1.3.5 Sparse-data problems and smoothing

Returning to our example of language models for language identification,
recall that our unknown document is very likely to contain words that don’t
occur in either our English or French corpora. It is easy to see that if w is
a word that does not appear in our corpus d then the maximum likelihood
estimate θ̂w = 0, as nw(d) = 0. And this, together with Equation 1.2 on
page 17, means that P(w) = 0 if the document w contains an unknown
word.

To put this another way, in Section 1.3.1 we said that we would define
W, our vocabulary, as all the words in our training data plus ∗U∗. By defi-
nition, ∗U∗ does not appear in our training data, so the maximum likelihood
estimate assigns it zero probability.

This is fatal in many applications, including our language identification
task. Just because a word does not appear in our corpus d does not mean
it cannot appear in the documents we want to classify. This is what is
called a sparse-data problem: our training data d does not have the exact
range of phenomena found in the documents we ultimately intend to ana-
lyze. And the problem is more general than unknown words: it turns out
that maximum likelihood estimates θ̂ have a tendency for over-fitting, i.e.,
modeling the training data d accurately but not describing novel data well
at all. More specifically, maximum likelihood estimators select θ to make
the training data d as likely as possible, but for our language classification
application we really want something else: namely, to make all the other
documents we haven’t yet seen from the same language as d as likely as
possible.

The standard way to address over-fitting is by smoothing. If you think of
a probability function as a landscape with peaks and valleys, smoothing is a
kind of Robin-Hood process that steals mass from the rich peaks and gives
it to the poor valleys, all the while ensuring that the resulting distribution

DRAFT of 27 January, 2016, page 19

20 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

still sums to one. In many computational linguistic applications, maximum
likelihood estimators produce distributions that are too tightly tuned to their
training data and smoothing often improves the performance of models on
novel data. There are many ways to smooth and the precise method used
can have a dramatic effect on the performance. But while there are many
different ways to redistribute, in computational linguistics as in economics,
only a few of them work well!

A popular method for smoothing the maximum likelihood estimator in
(1.3) is to add a positive number αw called a pseudo-count to each word w’s
empirical frequency nw(d) in (1.3), readjusting the denominator so that the
revised estimates of θ still sum to 1. (You can view the pseudo-counts α
as counts coming from hypothetical or pseudo-data that are added to the
counts n(d) that we get from the real data.) This means that our smoothed
maximum likelihood estimator θ̃ is:

θ̃w =
nw(d) + αw
n◦(d) + α◦

(1.4)

where α◦ =
∑

w∈W αw is the sum over all words of the pseudo-counts. With

this estimator, θ̃w for all w is always greater than zero even if nw(d) = 0, so
long as αw > 0. This smoothing method is often called add-alpha smoothing.

Notation: A tilde over parameter values indicates that the parameters de-
fine a smoothed distribution.

It is standard to bin or group words into equivalence classes and assign
the same pseudo-count to all words in the same equivalence class. This way
we have fewer pseudo-count parameters to estimate. For example, if we
group all the words into one single equivalence class, then there is a single
pseudo-count value α = αw that is used for all w ∈ W and only a single
parameter need be estimated from our held-out data. This works well for
a surprising number of applications. Indeed, often the actual value of α is
not critical and we just set it to one. (This is called add-one smoothing or
alternatively Laplace smoothing.)

Example 1.7: Let us assume that all w get the same smoothing constant. In
this case Equation 1.4 simplifies to;

θ̃w =
nw(d) + α

n◦(d) + α|W|
.

Suppose we set α = 1 and we have |W| = 100, 000 and n◦(d) = 107. As in Example
1.5, the two words ‘the’ and ‘equilateral’ have counts 2·105 and 2, respectively.

DRAFT of 27 January, 2016, page 20

1.3. MODELING DOCUMENTS WITH UNIGRAMS 21

Their maximum likelihood estimates again are 0.02 and 2·10−7. After smoothing,
the estimate for ‘the’ hardly changes

θ̃‘the’ =
2·105 + 1

107 + 105
≈ 0.02

while the estimate for ‘equilateral’ goes up by 50%:

θ̃‘equilateral’ =
2 + 1

107 + 105
≈ 3·10−7

Of course, we now face another estimation problem, because we need to
specify the values of the pseudo-counts α. It is reasonable to try to estimate
these from our data d, but in this case maximum likelihood estimations are
of no use: they are just going to set α to zero!

On reflection, this should be no surprise: if w does not occur in the data
d, then the maximum likelihood estimator sets θ̂w = 0 because to do oth-
erwise would “waste” probability on w. So if we select α in our smoothed
estimator to maximize the likelihood of d then αw = 0 for exactly the same
reason. In summary, setting θw = 0 when nw(d) = 0 is an eminently sensible
thing to do if we are concerned only with maximizing the likelihood of our
data d. The problem is that our data d is not representative of the occur-
rence or non-occurrence of any specific word w in brand new documents.

One standard way to address this problem is to collect an additional
corpus of training documents h, the held-out corpus, and use them to set
the smoothing pseudo-count parameters α. This makes sense because one of
the primary goals of smoothing is to correct, or at least ameliorate, problems
caused by sparse data, and a second set of training data h gives us a way of
saying just how bad d is as a representative sample. (The same reasoning
tells us that h should be “fresh data”, disjoint from the primary training
data d.)

In fact, it is standard at the onset of a research project to split the
available data into a primary training corpus d and a secondary held-out
training corpus h, and perhaps a third test corpus t as well, to be used to
evaluate different models trained on d and h. For example, we would want
to evaluate a language identification system on its ability to discriminate
novel documents, and a test set t disjoint from our training data d and h
gives us a way to do this. Usually d is larger than h as it needs to estimate
many parameters (for the unigram model, the total number of word types),
while typically h sets very few (one if all the α’s are the same). Similarly
the we need less testing than training data. A standard split might be 80%
for training and 10% each for the held-out and testing sets.

DRAFT of 27 January, 2016, page 21

22 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

1.3.6 Estimating the smoothing parameters

We now describe how to use a held-out corpus h to estimate the pseudo-
countsα of the smoothed maximum likelihood estimator described on page 20.
We treat h, like d, as a long vector of words obtained by concatenating all
of the documents in the held-out corpus. For simplicity we assume that all
the words are grouped into a single bin, so there is a single pseudo-count
α = αw for all words w. This means that our smoothed maximum likelihood
estimate (1.4) for θ simplifies to Equation 1.5.

Example 1.8: Suppose our training data d is ♥ from Example 1.6 and the held-
out data h is ♥′, which consists of eight copies of ‘I love you’ plus one copy each of
‘I can love you’ and ‘I will love you’. When we preprocess the held-out data both
‘can’ and ‘will’ become ∗U∗, so W = { i love you ∗U∗}. We let α = 1.

Now when we compute the likelihood of ♥′ our smoothed θs are as follows:

θ̃‘i’ =
100 + 1

300 + 4

θ̃‘love’ =
100 + 1

300 + 4

θ̃‘you’ =
100 + 1

300 + 4

θ̃‘∗U∗’ =
1

300 + 4

These are then substituted into our normal likelihood equation.

We seek the value α̂ of α that maximizes the likelihood Lh of the held-out
corpus h for reasons explained in section 1.3.5 on page 19.

α̂ = argmax
α

Lh(α)

Lh(α) =
∏
w∈W

(
nw(d) + α

n◦(d) + α|W|

)nw(h)

(1.5)

Argmax (pronounced just as it is spelled) is the abbreviation of “argument
maximum”. arg maxx f(x) has as its value the value of x that makes f(x) as
large as possible. Consider the function f(x) = 1−x2. Just a bit of thought
is required to realize that the maximum of f(x) is 1 and occurs when x = 0,
so arg maxx 1− x2 = 0.

With that out of the way, let us return to the contemplation of Equation
1.5. This formula simply says that the likelihood of the held-out data is
the product of the probability of each word token in the data. (Make sure
you see this.) Again we have ignored the factor in Lh that depends on

DRAFT of 27 January, 2016, page 22

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 23

the length of h, since it does not involve α. If you plug in lots of values
for α you find that this likelihood function has a single peak. (This could
have been predicted in advance.) Thus you can try out values to home in
on the best value. A line-search routine (such as Golden Section search)
does this for you efficiently. (Actually, the equation is simple enough that
α̂ can be found analytically.) But be aware that the likelihood of even a
moderate-sized corpus can become extremely small, so to avoid underflow
you should compute and optimize the logarithm of the likelihood rather than
the likelihood itself.

1.4 Contextual dependencies and n-grams

The previous section described unigram language models, in which the words
(or whatever the basic units of the model are) are each generated as inde-
pendent entities. This means that unigram language models have no way
of capturing contextual dependencies among words in the same sentence
or document. For a comparatively simple task like language identification
this may work fine. But remember the example at the start of this chap-
ter where a speech recognition system would want to distinguish the fluent
‘I saw a rose’ from the disfluent ‘I saw arose.’

In fact, there are a large number of different kinds of contextual depen-
dencies that a unigram model does not capture. There are clearly dependen-
cies between words in the same sentence that are related to syntactic and
other structure. For example, ‘students eat bananas’ is far more likely than
‘bananas eat students’, mainly because students are far more likely to be
eaters than eaten while the reverse holds for bananas, yet a unigram model
would assign these two sentences the same probability.

There are also dependencies that hold intersententially as well as in-
trasententially. Some of these have to do with topicality and discourse
structure. For example, the probability that a sentence contains the words
‘court’ or ‘racquet’ is much higher if a preceding sentences contains ‘tennis’.
And while the probability of seeing any given name in the second half of
a random document is very low, the probability of seeing a name in the
second half of a document given that it has occurred in the first half of that
document is generally many times higher (i.e., names are very likely to be
repeated).

Methods have been proposed to capture all these dependencies (and
many more), and identifying the important contextual dependencies and
coming up with language models that capture them well is still one of the

DRAFT of 27 January, 2016, page 23

24 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

/ students eat bananas /

Figure 1.1: The four bigrams extracted by a bigram language from the
sentence ‘students eat bananas’, padded with ‘/’ symbols at its beginning
and end.

central topics in computational linguistics. In this section we describe how to
capture one of simplest yet most important kinds of contextual dependencies:
those that hold between a word and its neighbors. The idea is that we slide
a window of width n words over the text, and the overlapping sequences of
length n that we see through this window are called n-grams. When n=2
the sequences are called bigrams and when n=3 the sequences are called
trigrams. The basic idea is illustrated for n=2 in Figure 1.1.

It turns out that a surprising number of contextual dependencies are
visible in an n-word window even for quite small values of n. For exam-
ple, a bigram language model can distinguish ‘students eat bananas’ from
‘bananas eat students’. This is because most linguistic dependencies tend
to be local in terms of the word string, even though the actual dependencies
may reflect syntactic or other linguistic structure.

For simplicity we focus on explaining bigram models in detail here (i.e.,
n=2), but it is quite straightforward to generalize to larger values of n.
Currently most language models are built with n = 3 (i.e., trigrams), but
models with n as high as 7 are not uncommon. Of course, sparse-data
problems become more severe as n grows, and the precise smoothing method
used can have a dramatic impact on how well the model generalizes.

1.4.1 Bigram language models

A bigram language model is a generative model of sequences of tokens. In our
applications the tokens are typically words and the sequences are sentences
or documents. Informally, a bigram language model generates a sequence
one word at a time, starting with the first word and then generating each
succeeding word conditioned on the previous one.

We can derive the bigram model via a sequence of equations and sim-
plifying approximations. Ignoring the length of W for the moment, we can
decompose the joint probability of the sequence W into a product of condi-
tional probabilities (this operation is called the chain rule and is used many
times in this text):

DRAFT of 27 January, 2016, page 24

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 25

P(W) = P(W1, . . . ,Wn)

= P(W1)P(W2|W1) . . .P(Wn|Wn−1, . . . ,W1) (1.6)

where n is the length of W . Now we make the so-called Markov assumption,
which is that

P(Wi |Wi−1, . . . ,W1) = P(Wi |Wi−1) (1.7)

for all positions i ∈ 2, . . . , N . Putting (1.6) and (1.7) together, we have:

P(W) = P(W1)

n∏
i=2

P(Wi |Wi−1) (1.8)

In addition, we assume that P(Wi | Wi−1) does not depend on the position
i, i.e., that P(Wi |Wi−1) = P(Wj |Wj−1) for all i, j ∈ 1, . . . n.

We can both simplify the notation and generate the length of W if we
imagine that each sequence is surrounded or padded with a special stop
symbol ‘/’ that appear nowhere else in the string. What we mean by this is
that if w = (w1, . . . , wn) then we define w0 = wn+1 = /. We generate the
first word in the sentence with the context ‘/’ (i.e., P(W1) = P(W1|/), and
stop when we generate another ‘/’, which marks the end of the sequence.
The stop symbol ‘/’ thus has a rather strange status: we treat ‘/’ as a token,
i.e., / ∈ W, even though it never appears in any sequence we generate.

Notation: The / symbol can be used for both the start and end of a se-
quence. However, sometimes we find it clearer to use . for the start.
Nothing depends on this.

In more detail, a bigram language model is defined as follows. If W =
(W1, . . . ,Wn) then

P(W) =

n+1∏
i=1

P(Wi |Wi−1) (1.9)

where

P(Wi=w
′ |Wi−1=w) = Θw,w′ for all i in 1, 2, . . . , n+ 1

and Θ = {Θw,w′ : w,w′ ∈ W} is a matrix of parameters specifying the
conditional probability of w′ given it is preceded by w. Just as in the unigram
model, we assume that these conditional probabilities are time-invariant, i.e.,
they do not depend on i directly. Because probabilities must sum to one, it
is necessary that

∑
w′∈W Θw,w′ = 1 for all w ∈ W.

DRAFT of 27 January, 2016, page 25

26 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

Notation: We have many situations in which the parameters of a model
are conditional probabilities. Here the parameter is the conditional
probability of word given the previous word. Naturally such parame-
ters have two subscripts. We order the subscripts so that the first is
the conditioning event (here the previous word (w)) and the second is
the conditioned event (w′).

Example 1.9: A bigram model assigns the following probability to the string
‘students eat bananas’.

P(‘students eat bananas’) = Θ/,‘students’ Θ‘students’,‘eat’
Θ‘eat’,‘bananas’ Θ‘bananas’,/

In general, the probability of a string of length n is a product of n+ 1 conditional
probabilities, one for each of the n words and one for the end-of-sentence token ‘/’.
The model predicts the length of the sentence by predicting where ‘/’ appears, even
though it is not part of the string.

This generalizes to n-gram language models as follows. In an n-gram
model each word Wi is generated conditional on the n − 1 word sequence
(Wi−n+1 . . .Wi−1) that precedes it, and these conditional distributions are
time-invariant, i.e., they don’t depend on i. Intuitively, in an n-gram model
(Wi−n+1 . . .Wi−1) form the conditioning context that is used to predict Wi.

Before going on, a typical misconception should be nipped in its bud.
Most students seeing the bigram (or n-gram) model for the first time think
that it is innately directional. That is, we start at the beginning of our
sentence and condition each word on the previous one. Somehow it would
seem very different if we started at the end and conditioned each word on
the subsequent one. But, in fact, we would get exactly the same probability!
You should show this for, say, ‘students eat bananas’. (Write down the four
conditional probabilities involved when we use forward bigram probabili-
ties, and then backward ones. Replace each conditional probability by the
definition of a conditional probability. Then shuffle the terms.)

It is important to see that bigrams are not directional because of the mis-
conceptions that follow from thinking the opposite. For example, suppose
we want a language model to help a speech recognition system distinguish
between ‘big’ and ‘pig’ in a sentence ‘The big/pig is ...’. Students see that
one can make the distinction only by looking at the word after big/pig, and
think that our bigram model cannot do it because somehow it only looks at
the word before. But as we have just seen, this cannot be the case because
we would get the same answer either way. More constructively, even though

DRAFT of 27 January, 2016, page 26

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 27

both of big/pig are reasonably likely after ‘the’, the conditional probabili-
ties P(is|big) and P(is|pig) are very different and presumably strongly bias
a speech-recognition model in the right direction.

(For the more mathematically inclined, it is not hard to show that under
a bigram model, for all i between 1 and n:

P(Wi=wi |Wi−1=wi−1,Wi+1=wi+1) =
Θwi−1,wi Θwi,wi+1∑
w∈W Θwi−1,w Θw,wi+1

which shows that a bigram model implicitly captures dependencies from
both the left and right simultaneously.)

1.4.2 Estimating the bigram parameters Θ

The same basic techniques we used for the unigram model extend to the
bigram and higher-order n-gram models. The maximum likelihood estimate
selects the parameters Θ̂ that make our training data d as likely as possible:

Θ̂w,w′ =
nw,w′(d)

nw,◦(d)

where nw,w′(d) is the number of times that the bigram w,w′ appears any-
where in d (including the stop symbols ‘/’), and nw,◦(d) =

∑
w′∈W nw,w′(d)

is the number of bigrams that begin with w. (Except for the odd cases of
start and stop symbols, nw,◦(d) = nw(d), i.e., the number of times that w
appears in d). Intuitively, the maximum likelihood estimator is the obvi-
ous one that sets Θw,w′ to the fraction of times w′ was seen immediately
following w.

Example 1.10: Looking at the ♥′ corpus again, we find that

Θ̂/,‘i’ = 1

Θ̂‘i’,‘love’ = 0.8

Θ̂‘i’,‘will’ = 0.1

Θ̂‘i’,‘can’ = 0.1

Θ̂‘can’,‘love’ = 1

Θ̂‘will’,‘love’ = 1

Θ̂‘love’,‘you’ = 1

Θ̂‘you’,‘i’ = 0.9

Θ̂‘you’,/ = 0.1

DRAFT of 27 January, 2016, page 27

28 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

The sparse-data problems we noticed with the unigram model in S ec-
tion 1.3.5 become more serious when we move to the bigram model. In
general, sparse-data problems get worse as we work with n-grams of larger
size; if we think of an n-gram model as predicting a word conditioned on
the n − 1 word sequence that precedes it, it becomes increasingly common
that the conditioning n− 1 word sequence occurs only infrequently, if at all,
in the training data d.

For example, consider a word w that occurs only once in our training
corpus d (such word types are extremely common). Then nw,w′(d) = 1
for exactly one word w′ and is 0 for all other words. This means that the
maximum likelihood estimator is Θ̂w,w′ = 1, which corresponds to predicting
that w can be followed only by w′. The problem is that we are effectively
estimating the distribution over words that follow w from the occurrences of
w in d, and if there are only very few such occurrences then these estimates
are based on very sparse data indeed.

Just as in the unigram case, our general approach to these sparse-data
problems is to smooth. Again, a general way to do this is to add a pseudo-
count βw,w′ to the observations nw,w′ and normalize, i.e.:

Θ̃w,w′ =
nw,w′(d) + βw,w′

nw,◦(d) + βw,◦
(1.10)

where βw,◦ =
∑

w′∈W βw,w′ . While it is possible to follow what we did for
the unigram model and set βw,w′ to the same value for all w,w′ ∈ W, it is
usually better to make βw,w′ proportional to the smoothed unigram estimate

θ̃w′ ; this corresponds to the assumption that, all else equal, we’re more likely
to see a high-frequency word w′ following w than a low-frequency one. That
is, we set βw,w′ in (1.10) as follows:

βw,w′ = β θ̃w′

where β is a single adjustable constant. Plugging this back into (1.10), we
have:

Θ̃w,w′ =
nw,w′(d) + β θ̃w′

nw,◦(d) + β
(1.11)

Note that if β is positive then βw,w′ is also, because θ̃w′ is always positive.
This means our bigram model will not assign probability zero to any bigram,
and therefore the probability of all strings are strictly positive.

Example 1.11: Suppose w is ‘redistribute’ and we consider two possible next
words w′, ‘food’ and ‘pears’, with (assumed) smoothed unigram probabilities 10−4

and 10−6 respectively. Let β be 1.

DRAFT of 27 January, 2016, page 28

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 29

Suppose we have never seen the word ‘redistribute’ in our corpus. Thus nw,w′(d) =
nw,◦(d) = 0 (why?). In this case our estimate of the bigram probabilities reverts
to the unigram probabilities.

Θ̃‘redistribute’,‘food’ =
0 + 10−4

0 + 1

Θ̃‘redistribute’,‘pears’ =
0 + 10−5

0 + 1

If we have seen ‘redistribute’ (say 10 times) and ‘redistribute food’ once we get:

Θ̃‘redistribute’,‘food’, =
1 + 10−4

10 + 1

Θ̃‘redistribute’,‘pears’ =
0 + 10−5

10 + 1

The first is very close to the maximum likelihood estimate of 1/10, while the second
goes down to about 10−6.

We can estimate the bigram smoothing constant β in the same way we
estimated the unigram smoothing constant α, namely by choosing the β̂
that maximizes the likelihood of a held-out corpus h. (As with the unigram
model, h must differ from d, otherwise β̂ = 0.)

It is easy to show that the likelihood of the held-out corpus h is:

Lh(β) =
∏

w,w′∈W
Θ̃
nw,w′ (h)

w,w′ (1.12)

where Θ̃w,w′ is given by (1.10), and the product in (1.12) need only range
over the bigrams (w,w′) that actually occur in h. (Do you understand why?)
Just as in the unigram case, a simple line search can be used to find the
value β̂ of β that optimizes the likelihood (1.12).

1.4.3 Implementing n-gram language models

It usually simplifies things to assign each word type its own unique integer
identifier, so that the corpora d and h can be represented as integer vectors,
as can their unigram counts n(d) and n(h).

Typically, the n-grams extracted from a real corpus (even a very large
one) are sparse in the space of possible n-word sequences. We can take
advantage of this by using hash tables or similar sparse maps to store the
bigram counts nw,w′(d) for just those bigrams that actually occur in the
data. (If a bigram is not found in the table then its count is zero.) The
parameters θ̂w and Θ̂w,w′ are computed on the fly.

DRAFT of 27 January, 2016, page 29

30 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

As we mentioned earlier, because the probability of a sequence is the
product of the probability of each of the words that appear in it, the proba-
bility of even just a moderately long sequence can become extremely small.
To avoid underflow problems, it is wise to compute the logarithm of these
probabilities. For example, to find the smoothing parameters α and β you
should compute the logarithm of the likelihoods rather than just the likeli-
hoods themselves. In fact, it is standard to report the negative logarithm of
the likelihood, which is a positive number (why?), and smaller values of the
negative log likelihood correspond to higher likelihoods.

1.5 Kneser-Ney Smoothing

In many situations, bigram and trigram language models definitely included,
best practice is to use Kneser-Ney smoothing (KN). We first specify how it
computed, and then look at it more closely to understand why it works so
well.

Remember where we left off with bigram language models. In Equa-
tion 1.11. smoothing was accomplished by adding the terms β θ̃w′ and β
to the numerator and denominator respectively, where θ̃w′ is the unigram
probability estimate for w′.

In KN we change this to

Θ̄w,w′ =
nw,w′(d) + β κw′

nw,◦(d) + β

That is, we replace the smooth unigram estimate of w′, by a new parameter
κw′ . We compute κ from our training data, where kw′(d) is the number of
different word types that precede w′ in d and we set

κw =
kw(d)

k◦(d)
.

Our use of the dot notation here is the same as in previous notation,

k◦(d) =
∑
w′

kw′(d)

and thus the denominator is a normalization factor and κw is a probability
distribution.

Now for the intuition. We start with the observation that the more
often you depend on smoothing to prevent zero probabilities, the larger the
smoothing parameter should be. So one would require a larger β to mix in

DRAFT of 27 January, 2016, page 30

1.5. KNESER-NEY SMOOTHING 31

unigrams if we had 100,000 words of data than if we had, say 107 words.
By “require” here we mean of course that the log-likelihood function for our
data would have a maximum value with larger β.

Now consider two words, say ‘Francisco’ and ‘report’, and assume that
they both occur fifty times in our corpus. Thus their smoothed unigram
probabilities are the same. But suppose we see two new bigrams, one ending
in ‘Francisco’, the other in ‘report.’ If we use unigrams to smooth, these new
bigrams will themselves get the same probability. (Make sure you see why.)

But assigning them equal probability is a very bad estimate. In fact,
new bigrams ending in ‘report’ should be much more common than those
ending in ‘Francisco.’ Or to put it another way, we said that a smoothing
parameter should be in rough proportion to how often we need to use it to
prevent zeros in the data. But we almost never need to back off because of
a new word preceding ‘Francisco’ because, to a first approximation, all the
word tokens preceding it are of the same word type: ‘San’.

This is not true for ‘report’. In its fifty tokens we might see it preceded
by ‘the’ and ‘a’, say, ten times each, but we will have many words that have
preceded it only once, e.g., ‘financial,’ ‘government,’ and ‘dreadful.’ This is
certain to continue when we look at the test data, where we might encounter
‘January’, ‘I.B.M.’, etc. KN is designed to capture this intuition by backing
off not to the unigram probability, but to a number proportional to the
number of different types than can precede the word.

Example 1.12: Suppose in a million word corpus we have forty thousand word
types. Some plausible k numbers for ‘Francisco’ and ‘report’ might be:

k‘Francisco’(d) = 2

k‘report’(d) = 32

k◦(d) = 100, 000

We will set β to one. A new bigram probability ending in ‘Francisco’, say ‘Pedro Francisco’
would get the probability estimate:

Θ̄‘Pedro’,‘Fransisco’ =
0 + 1 · 2

0 + 1 · 100000

=
1

50000

whereas the equivalent number for ‘January report’ is 1/3125.

If you are anything like your authors, you still might be having trouble
getting your head around KM smoothing. Another good way to understand
it is to look at how your algorithms would change if you converted from

DRAFT of 27 January, 2016, page 31

32 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

smoothing with unigrams to KN. Suppose you have a function that, given
a bigram, updates the training parameters, e.g., addBigram(wi−1, wi). It
would look something like this:

1. nwi−1,wi+ = 1

2. nwi+ = 1

3. n◦+ = 1

Here is the function for KN smoothing:

1. If nwi−1,wi = 0

(a) kwi+ = 1

(b) k◦+ = 1

2. nwi−1,wi+ = 1

3. nwi+ = 1

That is, instead of incrementing the back-off counters for every new word,
you do it only when you have not seen its bigram before.

One last point. Just as we previously smoothed unigram counts with α
to account for unknown words, we need to do so when using KN. That is,
rather than κw we use κ̃w, where

κ̃w =
kw(d) + α

k◦(d) + α|W|

1.6 The Noisy Channel Model

We first noted the need for language modeling in conjunction with speech
recognition. We did this in an intuitive way. Good speech recognition
needs to distinguish fluent from disfluent strings in a language, and language
models can do that.

In fact, we can recast the speech recognition problem in a way that
makes language models not just convenient but (almost) inevitable. From a
probabilistic point of view, the task confronting a speech recognition system
is to find the most likely string S in a language given the acoustic signal A.
We write this formally as follows:

arg max
S

P(S|A) (1.13)

DRAFT of 27 January, 2016, page 32

1.7. EXERCISES 33

We now make the following transformations on this term:

arg max
S

P(S|A) = arg max
S

P(S)P(A|S)

P(A)

= arg max
S

P(S)P(A|S) (1.14)

If you ignore the “arg maxS” in the first line, this is just Bayes’ law. You
should be able to derive it by starting with the definition of conditional
probability and then using the chain law on the numerator.

In the second line we drop the P(A) in the denominator. We can do this
because as we vary the S to find the maximum probability the denominator
stays constant. (It is, remember, just the sound signal we took in.)

Now consider the two terms on the right-hand side of Equation 1.14. The
first is our language model, the second is called the acoustic model. That
a language model term arises so directly from the definition of the speech-
recognition problem is what we meant when we said that language modeling
is almost inevitable. It could be avoided, but all serious speech-recognition
systems have one.

This set of transformations has its own name, the noisy-channel model,
and it is a staple of NLP. Its name refers to it is origins in communication
theory. There a signal goes in at one end of a communication channel and
comes out at the other slightly changed. The process that changes it is called
noise. We want to recover the clean message C given the noisy message N .
We do so using the noisy channel model:

P(C|N) ∝ P(C)P(N |C)⇒ arg max
C

P(C|N) = arg max
C

P(C)P(N |C)

The first term is is called a source model (a probabilistic model of the input,
or source), while the second is called a channel model (a model of how noise
affects the communication channel). When we talk about speech recognition
we replace these terms with the more specific language model and acoustic
model.

1.7 Exercises

Exercise 1.1: In what follows w and w′ are word types and d is a end-
of-sentence padded corpus. Assume that there is a stop character at the
beginning and end of the corpus as well as between each sentence. True or
false:

1. If nw(d) = 1 then there exists exactly one w′ such that nw,w′ = 1.

DRAFT of 27 January, 2016, page 33

34 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

2. If there is exactly one w,w′ pair such that nw,w′ = 1, then nw(d) = 1.

3. Under an unsmoothed unigram model with parameters θ trained from
a corpus c, if Ld(θ) = 0 then there must be a w such that nw(d) > 0
and nw(c) = 0.

Exercise 1.2: Consider a corpus d comprising the following sentences:

The dog bit the man
The dog ate the cheese
The mouse bit the cheese
The mouse drank coffee
The man drank tea

Assuming each sentence is padded with the stop symbol on both sides and
ignoring capitalization, compute the smoothed bigram probability of “The
mouse ate the potato” using the smoothing defined in equation 1.11 (additive
smoothing) and the KN smoothing. Use α = 1 and β = 10. Show how you
compute the smoothed bigram probabilities for all five words.

Exercise 1.3: Consider the bigram model described by the following equa-
tions:

P(W) =

n+1∏
i=1

P(Wi |Wi−2)

We assume here that our sentences are padded with two stop symbols. Ex-
plain why this model should not do as well as the one presented in this
chapter.

Exercise 1.4: Once you have seen how a bigram model extends a unigram
model, it should not be too difficult to imagine how a trigram model would
work. Write down equations for a smoothed trigram language model using
additive smoothing and KN smoothing.

Exercise 1.5: A common method of smoothing is deleted interpolation. For
a bigram model, rather than Equation 1.11 we would use the following:

Θ̃w,w′ = λ·
nw,w′(d)

nw,◦(d)
+ (1− λ)θ̃w′

1. Show that if 1 ≥ λ ≥ 0,
∑

w′ Θ̃w,w′ = 1 for all w.

2. As with α, we can set λ by maximizing the likelihood of held-out data.
As the amount of training data goes up, would we expect λ to increase
or decrease?

DRAFT of 27 January, 2016, page 34

1.8. PROGRAMMING PROBLEM 35

1.8 Programming problem

Problem 1.1: Distinguishing good from bad English
Write a program that can, at least to some degree, distinguish between

real English and the output of a very bad French-to-English machine transla-
tion system. The basic idea is that you create a language model for English,
and then run it on both the good and bad versions of sentences. The one
that is assigned the higher probability is declared to be the real sentence.
This assignment guides you through the steps involved in doing this.

The /course/cs146/asgn/langmod/data/ directory contains the data
we use to train and test the language models. (This data comes from the
Canadian Hansard’s, which are parliamentary proceedings and appear in
both English and French. Here we just use the English.) These files have
one sentence per line and have been tokenized, i.e., split into words. We
train our language model using english-senate-0.txt as the main training
data. We also need held-out training data to set the smoothing parameters.
english-senate-2 is the test data. Set the alphas and betas using the de-
velopment data, english-senate-1.txt. Your model assigns a probability
to each sentence, including the /padding at the end.

1. Create a smoothed unigram language model with the smoothing pa-
rameter α = 1. Compute the log probability of our language-model
test data english-senate-2.txt.

2. Now set the unigram smoothing parameter α to optimize the likelihood
of the held-out data as described in the text. What values of α do you
find? Repeat the evaluation described in the previous step using your
new unigram models. The log probability of the language-specific test
data should increase.

3. Now try distinguishing good from bad English. In good-bad.txt we
have pairs of sentences, first the good one, then the bad. Each sentence
is on its own line, and each pair is separated from the next with a
blank line. Try guessing which is which using the language model.
This should not work very well.

4. Now construct smoothed bigram models as described in the text, set-
ting β = 1, and repeat the evaluations, first on the testing text to see
what log probability you get, and then on the good and bad sentences.

5. Set the bigram smoothing parameter β using the alpha value as de-
scribed in step 2, and repeat both evaluations. What values of β

DRAFT of 27 January, 2016, page 35

36 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

maximize the likelihood of the held-out data?

6. Lastly, use the smoothed bigram model to determine good/bad sen-
tences.

1.9 Further Reading

If you turn to the end of this book you will not find a list of references. In
research papers such lists have two purposes — they are pointers to further
reading, and they help give credit where credit is due. In textbooks, however,
this second point is much less important. Furthermore, the topics in a book
such as this have been covered in hundreds or thousands, of papers.

Giving the reader guides to further reading is still important, but these
days tools such as Google Scholar work very well for this task. They are
far from perfect, but it seems to us that they are more reliable than lists
of references based upon your authors’ memories. Thus we assume you
have a tool like Google Scholar, and our goal now is to make sure you have
the right key words to find important papers in various subdisciplines of
language modeling (LM). Here are a few.

Naturally the best key words are language modeling. Also unigram,
bigram, Kneser Ney

Adaptation in LM is changing the probability of words depending on
their context. If in reading an article you encounter the words ‘money’ and
‘bank’, you are more likely to see the word ‘stock’ than ‘piano.’ You are also
more likely to see ‘money’ and ‘bank’ a second time, in which case it might
be a good idea to store recently seen words in a cache. Such adaptation is
one kind of long-range dependency in LM.

A quite different approach are models based on neural nets.
A very good smoothing method that does not require held-out data is

Good-Turing smoothing.
LM is used in many tasks other than speech recognition. Information

retrievalis a general term for finding information from documents relating to
some topic or question. It is often useful to characterize it in terms of LM.
Other tasks that involve LM are spam detection and hand-writing recogni-
tion. However, after speech recognition, the most prominent application is
surely machine translation, the topic of the next chapter.

DRAFT of 27 January, 2016, page 36

