Chapter 2

Machine Translation

In the early 1960s the philosopher Bar-Hillel published a famous attack on
work in machine translation or MT. He made two main points: first, MT
required a machine to understand the sentence to be translated, and sec-
ond, we were so far from designing programs that could understand human
language that we should put off MT into the indefinite future.

On the first point, Bar-Hillel’s argument was conclusive. He simply
pointed out that even a very simple example, like translating “The baby
picked up a pen”, is difficult because ‘pen’ has two meanings (or, in NLP
terminology, word senses): “writing instrument” and “animal/baby pen”.
If the target language (the language into which we are translating) does not
have a word with exactly these two senses, it is necessary to disambiguate
‘pen’. (To “disambiguate” is to make unambiguous, in this case to decide
which word sense was intended.) Word-sense disambiguation is an ongoing
research issue. Furthermore, once we see one example like this it is not hard

to think of many more.

Since we are still a long way from programs that understand what they
read, perfect MT is still in the future. But perhaps the really difficult MT
problems do not occur very often. That seems to be the case: readable
MT, MT with only a few debilitating mistakes, now seems within our grasp.
Certainly the progress over the last ten-fifteen years has been phenomenal.
That this progress has been largely fueled by the new statistical approaches
is one of the best selling points for statistical NLP. In this chapter we look
at (elementary) MT from the statistical perspective. In doing so we also
motivate some of the mathematical techniques used throughout this book,
particularly the expectation mazimization algorithm (EM for short).

The key idea behind statistical MT is quite simple. If we want to trans-
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38 CHAPTER 2. MACHINE TRANSLATION

late between, say, French and English we first obtain a French-English par-
allel corpus — a text in which each sentence expressed in French is aligned
with an English sentence meaning the same thing. The first such corpus to
be used for MT was the so-called Canadian Hansard’s — the proceedings
of the Canadian parliament, which by Canadian law must be published in
both English and French no matter which language was used by the speak-
ers in parliament. (It is called Hansard’s after the British printer who first
published the proceedings of the British parliament.)

Now suppose we want to know which English word (or words) are the
translations of the French word ‘pain’. (The most common translation is
‘bread’.) To make this concrete, let us further suppose that our “corpus”
consisted of the following French/English pairs:

J ’ai acheté du pain I bought some bread
J ’ai acheté du beurre I bought some butter
Nous devons manger le pain blanc We must eat the white bread

(In French ‘j’ai’is a single word. However when tokenizing French is it useful
to split it in two, much as on page we discussed splitting ‘doesn’t’ into
‘does’ and ‘n’t’.)

As we go through the corpus looking for French sentences with ‘pain’in
them, we check the words in the corresponding English sentence. Here we
arranged it so that the word ‘bread’ is the only word common between the
first and last sentences. In general things will not be so easy, but it is not
hard to believe that you will find ‘bread’ occurring with great regularity as
a possible translation of ‘pain’, and that at the very least it would become
one of your top candidates.

Statistical MT follows from this simple observation.

2.1 The fundamental theorem of MT

Now let us start at the beginning and develop this idea more precisely.

Notation: Here F' is a random variable denoting a French (or foreign)
sentence, with f being a possible value, and F is a random variable
denoting an English sentence. We use M for the length of F', so
F =< Fy,...F,, >. Similarly, L is the length of E =< FE;j... E; >.
We also typically use j to index over English sentences and k over
French.
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2.1. THE FUNDAMENTAL THEOREM OF MT 39

1. We must eat the white bread
2. We must eat the bread white

3. We eat must the bread white.

Figure 2.1: Some possible translations of “Nous devons manger le pain
blanc”

From a probabilistic point of view, MT can be formalized as finding the
most probable translation e of a foreign language string f, which is

argmaxP(e | f).

As noted in[1.6] the noisy-channel model is often a good way to approach
“argmax”-type problems, and we do this here:

argmgxP(e | f) =arg mgxP(e)P(f | e). (2.1)

This equation is often called the fundamental theorem of machine transla-
tion. The first term on the right is a language model, as discussed in Chapter
The second term is the translation model. It encodes the procedure for
turning English strings into French ones.

At first glance, this second term looks counterintuitive. On the left we
have the term P(e | f) and we turn this into a problem requiring that we
estimate P(f | e). Given that it is just as hard to translate from English
into French as the other way around, it is not obvious that the noisy-channel
model has gained us much.

Nevertheless, this factorization is useful because the translation and lan-
guage models capture different kinds of dependencies, and tells us how
these should be combined. To see this, let us consider the third sentence in
our fake “corpus” in the introduction: “Nous devons manger le pain blanc”.
Consider the several possible English translations in Figure The first is
the correct translation, the second is the word-by-word translation, and the
last permutes the second two words instead of the last two.

In our current state of knowledge, our translation models are very poor
at ordering the words in the translation and at picking the best words for a
particular context. Thus it would not be surprising if the translation model
picked the incorrect literal translation in Figure as the best and the other
two as equally likely variants. On the other hand, the overlapping windows
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40 CHAPTER 2. MACHINE TRANSLATION

of even a simple trigram language model should have no problem assigning
the first a comparatively high probability and the others dramatically lower
ones. Thus by multiplying the two probabilities, our program has a much
better chance of getting the correct result.

A second important advantage of the noisy-channel formulation is that,
while the translation model P(F'|E) needs to be trained from parallel data
(which always is in short supply), the language model P(E) can be trained
from monolingual data, which is plentiful. Thus it permits us to train our
translation system from a wider range of data, and simply adding more
training data usually results in more accurate translations (all other factors
equal).

In the last chapter we covered language modeling. Here we start with
the translation model.

2.2 The IBM Model 1 noisy-channel model

We now turn to a very simple model for P(F|E) known as IBM model 1, so
called because it was the first of five ever more complex MT models defined
by a group at IBM in the early 1990s.

This model makes a number of simplifying assumptions that more com-
plex models remove. These assumptions mean that model 1 is not a partic-
ularly accurate channel model, but it is very simple and easy to train. (We
show how to relax one of these assumptions when we explain IBM model 2
in2.3))

IBM model 1 assumes that each French word fj is the translation of
exactly one English word in e, say e;. That is, we assume f, is independent
of all the other words in e given the word e;.

This assumption is less restrictive than it may seem at first. We don’t
insist that £ = j, so the French words don’t need to be in the same order
as the English words they correspond to. We also don’t require a one-to-
one mapping between English and French words, so each English word can
correspond to zero, one, or several French words. We can also give French
words some of the same flexibility by assuming that each English sentence e
contains an additional invisible null word (also called a spurious word) ‘*«Nx’
that generates words in f that aren’t translations of any actual word in e.
(The *Nx is assumed to be eg, the “zeroth” word of the English sentence.)

None of the IBM models give up the “one English word” assumption,
but more recent work does. This work, to be discussed at the end of this
chapter, assumes that multiword phrases, rather than individual words, are
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2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 41

the basic atomic units of translation.

We formalize this word-to-word translation idea in terms of word align-
ments. A word alignment a from a French sentence f of length m to an
English sentence e of length [ is a vector of length m where e,, is the En-
glish word that translates to fi. That is, aj is a position in e, i.e., an integer
between 0 and /.

Example 2.1: In our toy corpus in the introduction,

J ’ai acheté du pain I bought some bread
J ’ai acheté du beurre I bought some butter
Nous devons manger le pain blanc  We must eat the white bread

the alignment for the first sentence pair is
<1,0,2,3,4 >

Note how the second French word aligns with the zeroth English word, the spurious

word. The ‘ai’ is needed to express past tense in French, and there is no word

corresponding to it in the English. Otherwise the translation is word-for-word.
The correct alignment for the third sentence is:

<1,2,3,4,6,5>

Again the alignment is close to word-for-word, except that it switches the order of
between ‘pain blanc’ and ‘white bread’.

To give another example, suppose the person who translated this into French
had deleted ‘devons’, the translation of ‘must’. Then we would have an alignment

<1,3,4,6,5>

Notice the alignment vector is now of length five rather than six, and none of the
French words align to ‘must’.

We introduce alignments into our probability equations using marginaliza-
tion. That is:

P(f|e) ZP f.ale) (2:2)

As explained in Chapter |1}, if you have joint probability P(C, D) you can
sum over all possible values of D to get the probability of C. Here, we obtain
the probability P(f|e) by marginalizing over A. We then separate f and a
using the chain rule:

P(f|e) ZPa\e (f|a,e) (2.3)
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42 CHAPTER 2. MACHINE TRANSLATION

It is useful to introduce a bit of terminology. Our parallel corpus gives
us just the English and French words, F, F. We say that these random
variables are visible variables, since we see their values in our data. On the
other hand, the alignment random variable A is not visible: it is a hidden
variable because our parallel corpus is aligned only with respect to sentences,
not words, so we do not know the correct value of A. Hidden variables are
useful when they give us a useful way to think about our data. We see in
ensuing sections how A does this.

Example 2.2: Some examples of P(a | e) are in order. So suppose we are align-
ing an e/f pair in which both are of length six. English and French have very
similar word order so, all else being equal, the most probable alignment might be
<1,2,3,4,5,6 >. In our “the white bread” example we came close to this except
the order of the last two words was exchanged, < 1,2, 3,4,6,5 >. This should have
a probability lower than 1 to 6 in order, but still relatively high.

At the other extreme, it is easy to make up alignments that should have very low
probability when we are aligning two six-word sentences. Consider < 6,5,4,3,2,1 >
— the French sentence is ordered in the reverse of the English. An even sillier
alignment would be < 1,1,1,1,1,1 >. This says that the entire French translation is
based upon the first word of the English, and the rest of the English was completely
ignored. There is nothing in the definition of an alignment function that forbids
this.

Even though many silly alignments should be assigned wvery low proba-
bilities, IBM model 1 assumes that all the ™ possible word alignments of e
and f are equally likely! Thus removing this assumption is one of the ma-
jor improvements of more sophisticated noisy-channel models for machine
translation. In particular, this is done in IBM model 2 discussed in section

2.3l

Nevertheless, IBM model 1 does remarkably well, so let’s see how the
equal-probability assumption plays out. We now plug the IBM model 1
assumption into (2.3)) and get our “model 1 equation”.

First. note that once we condition on a, we can break apart the proba-
bility of f into the probabilities for each word in f, fi. That is, we can now
say

P(f|e,a) H (i | €agr))-
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2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 43

Substituting this into equation gives us:

P(fle) = ZPG|€H (fr | eaqr))

= Pm|0O™) H (fr | ear)) (2.4)

In we replaced P(a | e) (the probability for alignment a) by P(m |
£)¢~. First. note that there are ™ possible alignments, and they all have
the same probability. This probability is £~"*. However, initially we are
only “given” (condition on) e from which we can get [, its length. Thus we

must “guess” (assign a probability to) m, the length of f. Hence the term
P(m | 1).

Example 2.3: Suppose f = ‘Pas fumer’ and e = ‘No smoking’. Here | = m = 2,
so the probability of any one alignment is iP(M = 2| L = 2). Next consider the
length term. A plausible value for P(2 | 2) would be 0.4. That is, a substantial
fraction of French two-word sentences get translated into two-word English ones.
So the product of the terms outside the summation in would be 0.1.

Equation describes a generative model in that, given an English
sentence e, it tells us how we can generate a French sentence f along with
its associated probability. As you may remember, in Chapter [I| we talked
about a generative “story” as a good way to explain equations that describe
generative models. Here is the associated generative story .

Given a sentence e of length ¢, we can generate a French sentence f of
length m using the following steps and their associated probabilities.

1. Choose the length m of the French sentence f. This gives us the
P(m | l) in Equation

2. Choose a word alignment a at random from the £ possible alignments.
This give us the /=™ portion.

3. Generate each French word Fj,k = 1,...,m from the English word
€a;, 1t is aligned to with probability P(fx | eqx)). (This gives us

[Tis: P(fr | eaq))-)

This gives one way to generate f from e — the way corresponding to the
chosen alignment a. We can generate f in lots of ways, each one corre-
sponding to a different alignment. In Equation we sum over all of these
to get the total probability of P(f|e).
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44 CHAPTER 2. MACHINE TRANSLATION

From this story we see immediately that the IBM model 1 channel model
has two sets of parameters. One set is the estimate of the conditional prob-
ability P(m|f) of generating a French sentence of length m from an English
sentence of length ¢. The most straightforward way to get this is to use the
maximum likelihood estimator. First go through the parallel corpus and
count how often an English sentence of length £ is paired with a French sen-
tence of length m. In our usual way, we call this 7y ,,,. Then to get the max-
imum likelihood estimation we divide this by how often an English length ¢
appears in the corpus, ns.. We call these parameters 1, = 11 /10 0.

The second set of parameters is the conditional probabilities P(f|e) of
generating the French word f given that it is aligned to the English word e,
henceforth referred to as 7 ;.

After substituting the model parameter estimations into our IBM model 1
equation, we get this:

P(fle) = neml™™ > [ et (2.5)

a k=1

All the terms of this equation are either known or easily estimated except
for the 7’s. We turn to this next.

Example 2.4: If f is ‘J’ai acheté du pain’ then P(f | e) will be the same if e
is ‘I bought some bread’ or ‘Bought I some bread’. Basically, this is a consequence
of the assumption that all alignments are equally likely. More immediately, we
can see this from Equation Both English versions have ¢ = 4 so 1y, ¢™™ is
the same for both translations. Then in the first case a; =< 1,0,2,3,4 > while
ay; =< 2,0,1,3,4 >. With these alignments the product of 7, will be the
same, differing only in the order of multiplication.

On the other hand, consider the two possible translations ‘I bought some bread’
and ‘I bought bread’. (In most cases the second of these would be the preferred
translation because the ‘du’ in the French version is grammatically obligatory. It
does not have any meaning of its own and thus need not be translated.) Now the
translation model probabilities will differ. First, for comparable sentences French
tends to use more words than English by about 10%, so while 74 4 will probably
be larger than 73 4 the difference will be small. The next term, however, £=™, will
be larger for the shorter English sentence (4=% vs. 37%). The difference in word
probabilities will be due to the difference in alignments of ‘du’ in the French to
‘some’ in the first English version and *N# in the second. Thus the first has the
term Tsome,duw and the second Tin«,qy. Both these translation pairs are reasonably
likely, but in our model TiN« 4, Will typically be smaller because the null word
has quite a few translations but ‘some’ has fewer, and thus each one will be more
probable. Thus we would typically expect the translation model to slightly prefer
the more wordy English. On the other hand, a good English language model would

a(k) s fr
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J ’ai acheté du pain <1,0,2,3,4 > I bought some bread
J ’ai acheté du beurre <1,0,2,3,4 > I bought some butter
Nous devons manger le pain blanc < 1,2,3,4,6,5 > We must eat the white bread

Figure 2.2: A word-aligned version of our toy corpus

distinctly prefer the shorter English, and this would most likely tip the balance in
favor of ‘I bought bread’.

2.2.1 Estimating IBM model 1 parameters with EM

We attack the 7 problem by noting that it would be easy to estimate T
from a word-aligned parallel corpus, i.e., a corpus that specifies the word
alignment a for the English-French sentences. Figure shows such an
alignment for our toy corpus.

Note how the alignment allows us to read off how often each French
word is paired with each English, and from that it is easy to get a maximum
likelihood estimate of all the 7. ;. The maximum likelihood estimator for
Te,t is just the number of times e aligns to f divided by the number of times
e aligns with anything. Or, more formally:

ne,f(a) = Z lea, = €] - (2.6)
f

k:f=

where [condition] is the indicator function for condition, i.e., it is 1 if
condition is true and 0 otherwise. Then the maximum likelihood estimator
T is just the relative frequency, i.e.:

Ne,f(a)

7ﬁe7f = ne,o(a) (2.7)

where neo, = Zf Ne,f(@) is the number of times that e is aligned to any
French word in a (this is not necessarily the same as the number of times
e appears in the training corpus). These two equations combine to say, in
effect: go through the corpus counting how often e aligns with f and then
take the maximum likelihood estimate to get the corresponding probability.

Example 2.5: In Figure2.2|all the 7’s are 1, because each English word is aligned
to a unique French word. Suppose that we made a mistake and aligned ‘bread’
with ‘must” in the third sentence. Then T¢p a4’ <pain’ would be 1 because bread is
aligned with pain once, and bread is paired with anything two times.
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English  French Sentences 7'627 ¥
1 2 3
bought pain 1/2 1/4
bought acheté 1/2 1/2 1/2
bread  pain 1/2 1/2 1/2
bread  acheté  1/2 1/4
bought  beurre 1/2 1/4
butter  acheté 1/2 1/2
butter  beurre 1/2 1/2
eat pain 1/2 1/2
eat manger 1/2 1/2
bread  manger 1/2 1/4

Figure 2.3: Partial counts for English-French word pairs in three sentences

Now, let us suppose that the folks who created our word-aligned corpus
were not always confident that they could align the words correctly and that
when they were unsure they labeled alignments with probabilities: e.g., they
think eo aligns with fo, but it might be ey, so they assign a probability of
0.9 to the first and 0.1 to the second. What do we do when the alignments
are not yes or no, but more or less confident?

There are several possibilities. One is simply to ignore any alignment
with confidence less than some threshold, say 0.8. If we had more word-
aligned data than we could use, this would be a reasonable thing to do.
However, this is never the case, so if there is useful information in our
data we should try to extract it. And there is a lot of useful information
in alignments even when they are quite uncertain. Suppose the aligner
knows that in some ten-word sentence f; aligns with either e; or es, but
is completely unsure which, so they both get probability 0.5. Note that
without this information we were much more uncertain. In IBM model 1,
since all alignments are equally likely, those two alignments would have had
probability 0.1 each (since there were ten words in the sentence). So even a
50-50 split is useful.

We are now poised to introduce the first of two key insights of the so-
called expectation maximization algorithm (EM). In a case like the above we
split the alignment counts N, ; according to their probabilities. In the 50-50
split case both n., r and ne, r, get a 0.5 “count”. When we split a count
like this it is a fractional count or partial count.

Example 2.6: Suppose we have some annotators align our three-sentence par-
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allel corpus. For some reason they align ‘acheté’ with equal probability to both
‘bought’ and ‘bread’ in the first sentence. Similarly, ‘pain’ is also aligned with
equal probability to these two. The same sort of confusion occurs in the second
sentence, except now it is ‘acheté/beurre’ and ‘bought/butter’. In the third sen-
tences it is ‘manger/pain’ and ‘eat/bread’. Figure shows the partial counts we
get for these word pairs. For example, the first line starting with ‘bought’ indicates
that it is aligned with ‘pain’ 0.5 times in sentence one, and not at all in the other
two sentences. Looking down the columns, we see that each sentence is responsible
for a total of two counts. (Because we are assuming all the other words are unam-
biguous we are ignoring them. In effect assuming that the sentences only include
the ambiguous words.)

The last column gives the second iteration TZ, s that is computed from these
partial counts. (We occasionally use superscripts on parameter values to indicate
the iteration in which they apply. In the first iteration all of the 7s were equal and
the new 72’s are used in the second iteration.) For example,

Nbought’ ‘pain’

"bought’,o
= 1/2 =1/4.
1/2+1/2+1/2+1/2

Again, note that by this point EM is preferring ‘bought/acheté’ over any of the
other translations of ‘bought’, and similarly for ‘bread’ and ‘pain’. On the other
hand, the translations for ‘butter’ and ‘eat’ have not been clarified. This is because
each of these words appears only in a single sentence, so there is no way to get
disambiguation from other sentences.

-2
‘bought’,‘pain’

In the EM algorithm we take this to an extreme and pretend that initially
our annotaters gave each f-e alignment an equal probability. So for a ten-
word English sentence each fractional count would be 0.1. (Actually, it need
not necessarily be uniform, but when you don’t know anything, uniform
is most often the best thing to try.) Then after going through the corpus
summing up the fractional counts, we set the 7 parameters to the maximum
likelihood estimates from the counts, just as if they were “real”.

Now we introduce the second key idea. The parameters we have just ob-
tained should be much better than our original assumption that everything
was equally likely, so we repeat the process, but now using the new proba-
bilities. And so on. That is to say, EM is an iterative algorithm in which
we start with a very bad (e.g., uniform) distribution of our 7s and at each
iteration replace them with the ML estimate from the previous iteration. In
Section [2.2.3] after seeing that EM actually works, we give an analysis of
what EM is doing from a mathematical point of view.

To make this complete we just need the equation for computing fractional
counts when we have just probabilistic information about who is aligned with
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English  French Sentences 7'2 f
1 2 3
bought pain 1/3 2/11
bought acheté 2/3 1/2 7/11
bread  pain  2/3 1/2 7/11
bread  acheté 1/3 2/11
bought  beurre 1/3 2/11
butter  acheté 1/2 3/7
butter  beurre 2/3 4/7
eat pain /2 3/7
eat manger 2/3  4)7
bread  manger 1/3 2/11

Figure 2.4: Partial counts for English-French word pairs on the second iter-
ation

whom. For the moment we give it without mathematical justification:

Te.:
Ne, fot = Z—Zk (2.8)

where

Dk = ZTej,fk (2.9)
J

That is, within each sentence and for each French word fi, we add to our
running total of ne; r, the term on the right-hand side of Equation (We
implicitly assume that j runs over only the English words in the sentence
aligned with f.) This term is our estimate for the probability that fj is the
translation of our English word e; divided by the total probability that it
translates any of the English words in the corresponding sentence (py).

Actually, what we are computing here is the expected number of times
our generative model aligns fi with e; given our data, that is,

E[ne,f | ea.ﬂ'

We come back to this point in Section [2.:2.3] where we derive Equation [2.8
from first principles.

Example 2.7: The previous example (see Figure[2.3)) followed the EM algorithm
though its first iteration, culminating in a new 7. Here we go though the second
iteration (see Figure [2.4). As before, we go though the sentences computing n. ¢
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1. Pick positive initial values for 7, r for all English words e and all French
words f (equal is best).

2. For i =1,2,... until convergence (see below) do:

(a) E-step:
Set n, y = 0 for all English words e and French words f.
For each E/F sentence pair and for each French word position
k=1,...,m do:
i. Set px = Zé‘:o Te, .fn» Where j are the positions of the English
words in the same sentence pair as fg.
ii. For each 0 <j <, increment ne, f, += Te, f, / Dk
(ne,f now contains the expected number of times e aligns with f)
(b) M-step:
Set Te,f = Ne,f/Ne,0, Where ne o = Zf e, f-

Figure 2.5: EM algorithm for IBM model 1 inference

for each word pair. Again, to take a single example, consider Npoyght,acheté for the
first sentence.

Pacheté” = ZT‘j’,‘acheté’
J

Tbread’,‘acheté’ T T*bought’ ‘acheté’
= 1/4+1/2
= 3/4

T*bought’,‘acheté’
P<acheté’

1/2

3/

= 2/3

"bought’ ‘achete’ =

Thus we arrive at the EM algorithm for estimating the 7 parameters of
IBM model 1 shown in Figure A few points about this algorithm. First,
we can now understand why this is called the FEzpectation Maximization
algorithm. Each iteration has two steps. First in the e-step we use the
previous estimate 7(=1 of the parameters to compute the ezpected value of
the statistics ne r. Then in the m-step we set 7(® to the maximum likelihood
estimate using those expected values.
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Second, the algorithm says to iterate until “convergence.” The EM al-
gorithm finds values of the hidden parameters that correspond to a local
maximum of the likelihood.

La(®) o« []p (2.10)
k=1

That is the likelihood of the data is a constant times the product of the pis
where the constant is dependent only on the English strings. After a few
iterations neither the likelihood nor the 7s change much from one iteration
to the next. Since we need to compute the pi’s in the inner loop anyway,
keeping track of the likelihood at each iteration is a good way to measure
this “convergence”. We set a threshold, say 1%, and when the likelihood
changes less than this threshold from one iteration to the next we stop. (As
you might expect, multiplying all of these probabilities together produces a
very small number. Thus it is better to compute the log of the likelihood by
adding the log py’s.)

Also, while in general EM is guaranteed only to find a local maximum, in
our present application the likelihood of Equation [2.10]is indxunimodal —
it only has one maximum. Therefore in this case we find a global maximum.

Example 2.8: Figures and followed EM through two iterations on a sim-
ple example, where all the alignments were certain except those for ‘pain’, ‘acheté’,
‘buerre’,and ‘manger’. Let us compute the likelihood of our data with the 7 we
computed after the first and second iterations to check that the likelihood of our
training corpus is indeed increasing. Equation tells us to take the product of
the py for the position k of every French word in the corpus. First note that pr =1
for all French words k that we assumed were correctly and uniquely aligned, e.g.
‘j’, cai’ ‘le’; etc. So these can be ignored. All we need to do is look at the pgs
for all occurrences of the four French words that were originally labeled ambigu-
ously. However, rather than do them all, let’s just consider the p«,.pt¢’ in the first
sentence. First for the 7 after the first iteration:

Déacheté’” = Tacheté’,'bought’ T Tacheté’,‘bread’
= 1/2+1/4
= 3/4.

For the T we get after the second iteration

Dachete” = 2/3+1/3
= 1.

So this pg increases. As it turns out, they all either increase or remain the same.
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English word | Iteration 1 | Iteration 2 | Iteration 19 | Iteration 20
bread 0.042 0.138 0.3712 0.3710
drudgery 0.048 0.055 0.0 0.0
enslaved 0.048 0.055 0.0 0.0

loaf 0.038 0.100 0.17561 0.17571
spirit 0.001 0.0 0.0 0.0

mouths 0.017 0.055 0.13292 0.13298

o1

Figure 2.6: Probabilities for English words translating as ‘pain’

2.2.2 An extended example

Figure shows the estimated IBM model 1 parameters 7, pqin for several
English words e, trained on some sections of the Canadian Hansard’s. We
show these values after several different iterations of EM.

In the first iteration there is good news and bad news. The good news is
that Tyread pein comes out with a relatively high value. For example, ‘bread’
at 0.04 is considerably higher than ‘spirit’ at 0.001. However, the program
does not do too well distinguishing ‘bread’ from related words that appear
along with bread, such as ‘baked’, not to mention some seemingly random
words like ‘drudgery’, which at 0.048 seems way too high. And, of course, the
probability for ‘bread’ in Figure is much too low. The actual probability
of translating ‘bread’ as ‘pain’ is close to 1, say 0.9.

We now move on to a second iteration. Now the probability of ‘pain’
given ‘bread’ has gone up by better than a factor of three (from 0.042 to
0.138). Spirit fell off the map, but ‘drudgery’ and ‘enslaved’ went up, though
only slightly.

Having done this twice, there is nothing stopping us from repeating this
process ad infinitum, except after a while there is not much change from one
iteration to the next. After twenty iterations of EM ‘pain’is the translation
of ‘bread’ 37% of the time. This is very good compared to the first iteration,
but it is still too low. ‘Drudgery’ and ‘enslaved’ have properly gone to zero.
‘Loaf’ can be translated as ‘pain’, but the probability of 15% is probably
too high. This is because ‘loaf of bread’ would usually be translated as just
‘pain.’ ‘Mouths’ is definitely an artifact of some funny sentences somewhere.

We added an extra level of precision to the numbers for iterations 19 and
20 to show that the changes from one iteration are becoming quite small.
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2.2.3 The mathematics of IBM 1 EM

The EM algorithm follows from a theorem of statistics which goes roughly
as follows. Suppose you have a generative model that depends on hidden
parameters (in our case, the 7s). Initially make nonzero guesses about the
values of these parameters. Imagine actually generating all of the data
according to these parameters. In so doing, each of the 7s will be used an
estimated number of times E,. After going through our data we reset the 7’s
to their maximum likelihood value according to these estimates. This can be
iterated. The theorem states that as you iterate the 7s will monotonically
approach a set that gives a local maximum for the likelihood of the data.
(It is also possible to get stuck in a saddle-point, but we ignore that here.)

A quick comparison of the above description with the EM algorithm as
shown on Page 49| should convince you that it is correct, provided that what
we there labeled the e-step indeed computes expectation for the T’s. That is
what we prove in this section.

We first start with a clear formulation of what the expectation is that
we are computing at each iteration ¢:

ny = Epenlneslef] = Y nepl@)Pran(ale f). (211)

The first equality makes it clear that at iteration ¢ we compute the expecta-
tion according to the 7 we obtained at the previous iteration. (For the first
iteration we just use the initial, all equal 7s.) The second equality comes
from the definition of expectation. Here n. s(a) is the number of times f
is aligned with e in the alignment a defined in Equation and repeated
here:

nesl@ = Y e, =€
k:fu=f
So the right hand side says what we would expect (excuse the pun), that the
expectation is the number of times we align e and f in an alignment times
the probability of that alignment.

Unfortunately, the computation is intractable as expressed above because
it sums over all alignments. This number grows exponentially in the length
of a. We now show how the non-exponential computation we gave in our
EM algorithm is equivalent.

We do this in two steps. First we show how the expectation can be
reformulated as follows:

Er[ne,f ‘ e?f] = Z Z PT(Ak =7 ‘ e?f)' (2'12)

k:fx=fjej=e
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Note that in this equation there is no iteration over all a. Instead, it tells us
to march through each French word position k computing the sum on the
right. This is what we do when the EM algorithm says “For each French
word position k ...”. Also, note that it is intuitively quite reasonable: it says
that the expected number of times the English word type e is aligned with
French word type f is the sum of the probabilities of any English token e;
of type e being aligned with any French token f; of type f.
Then we show that for IBM model 1:

P (A, = j = Tefe 2.13
‘r( k=1 | eaf) - Zl - . ( . )
§'=0Te;r . fk

The 5’ in the denominator ranges over the word positions in the correspond-
ing English sentence.

In many applications EM is quite sensitive to its initial parameter values.
But, as remarked above, the likelihood function for IBM model 1 is
unimodal, which means that in this particular case it is not that important
how 7 is initialized. You can initialize it with random positive values, but
setting them all equal is typically best.

So now we turn our attention to the two equations and used
in the derivation of the EM algorithm above. Combining and
and reordering the summation, we have:

Elnegle fl = Y Z [ea, = €] P(a|e, f)

a  k:fy=

> Z[[eak—e]]Paklef) Pla—i| e f.ar).
k:fk=f

where a_j is the vector of word alignments for all words except fi (i.e., a_g
is a with a; removed). Splitting the sum over a into a sum over aj and a_
and rearranging the terms, we have:

Elneyle, f] = Z Z Z[[eak =e] P(ax | e, f) Pla— | e, f,ax)

kifg=f ar a—k

= Y S (lew =l Plas | e.f) Y Play | e f.ap)

k:fy=f ak a_g
= > > lea, =€) Plax | e, f)
k:fe=f ak
= > > PlA=ile )
k:fk=f jiej=e
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We get the third line here because ),  P(a_y | e, f,ax) = 1. All the terms
we are conditioning on are constants as far as the summation is concerned
and the sum of any probability distribution over all possible outcomes is 1.
Next, notice that nothing in this version depends on the entire a, just ay.
From this the final line follows, and this is equation [2.12]

When we turn to IBM model 2 we reuse this result, so we need to point
out several aspects of the equation that will become important. First, the
words that we are translating appear only in the summation. What we
actually compute is the probability of the alignment. The words tell us then
which n. ¢ bin gets incremented.

Second, we note that only one IBM model 1 assumption was used to get
here: that each French word is generated by zero or one English words. It
is this assumption that allows us to characterize all the important hidden
information in the alignment vector random variable A. Or, to put it an-
other way, alignments would not make much sense if several English words
were allowed to combine to form a French one. On the other hand, we did
not use the second major assumption, that all alignments have equal prob-
ability. Thus Equation s reuse is allowed when the latter assumption is
relaxed.

Turning to Equation we first use the postulate that IBM model 1
alignments of French word f; do not depend on the alignments of any other
French words, so:

P(Ax=jle f) = P(A=j|e, fu)
By Bayes’ law we have:

Ap=j,e) P(Ay=j
P(Ar=j | e, fx) = P kP](jfj)i; e (2.14)
_ Pk | Ak=j,e;) P(Ax=j | e) (2.15)
>y Pk [ Av=j'e5) P(Ar=j"[e)

In IBM model 1 all alignments are equally likely, i.e., P(Ax=j|e) = P(Ax=j"|e),
so:

P(Ak:] | B,f) _ P(fk | Ak:]7 ej) _ Tej, fx ) (216)

> Pk | Ae=3"se5r) X Te i

which is Equation Note that we have just used the all-alignments-are-
equiprobable assumption.
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2.3 IBM model 2

So far we have assumed that the probabilities of all alignments a are the
same. As this is not a very good assumption, IBM model 2 replaces it with
the assumption that a word at position k in the source language (French)
will be moved to position j in the target with probability P(A; = j|k,I,m),
where as before [ and m are the lengths of the English and French sentences
respectively. Once we add these probabilities to our equations, we let EM
estimate them, just like the word translation probabilities.

To see precisely how this works, let us go back and remember where the
offending assumption (all alignments are equally likely) was introduced into
our equations:

P(fle) = > P(f,ale) (2.17)
= ) Plale) P(f]|ae)
= P(m|DI"™> P(f|ae).

It is in the last equation that we replaced P(a | €) with P(m | [)I™™. We
back out of this assumption by reverting to the previous equation, so we
now need to compute P(a | €). We get our formula for this as follows:

Plale) = P(m|l) P(a|l,m)

m
= Pm |l [[P(Ar=j]i,1,m).

k=1
The first line assumes that the only thing the alignment probability takes
from the English sentence is its length. The second line assumes that each
alignment probability is independent of the others, and thus the probabil-
ity of the total alignment is just the product of the individual alignment
probabilities.

So IBM model 2 needs a new set of parameters d; 1, that are estimates
of P(Ar = j | k,l,m), the probability that the French word in position k is
aligned with the English word in position j given the position of the French
word (k) and the lengths of the two sentences (I, m). These parameters are
often called the distortion probabilities, whence the use of the Greek letter

d:

m
Plale) = mm H 0 ke,lm- (2.18)
k=1
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Example 2.9: Suppose we have the two sentences ‘ The white bread’ and ‘Le pain blanc’
with the alignment a =< 1,3,2 >. Then

Plale) = m33-01,133 02333 03233- (2.19)

Example 2.10: Suppose we have a French sentence of length 10 and we are
looking at the second word. Our English sentence is of length 9. The distortion
parameter for the case that Ay = 21is 2 2.9,10. A reasonable value of this parameter
would be around 0.2. We would expect this to be much larger than say, 672 10,9,
which might be, say, 0.01.

Example 2.11: Some combinations of § parameters cannot correspond to any
real situation and thus have probability zero, e.g. d20.2,10,9. The second French
word cannot be aligned to the twentieth English one when the English sentence
has only nine words. We condition on the sentence lengths so as not to assign
probability mass to such parameters.

In practice it is often convenient to index distortion probabilities on both
word positions and length of the French sentence, but not the English. When
we actually use them to translate we will know the former but not the latter,
at least not until the translation is completed.

Example 2.12: The assumption that the alignment probabilities are indepen-
dent of each other is not a very good one. To give a specific example, both French
and English allow prepositional phrases like ‘last Tuesday’ to migrate to the begin-
ning of a sentence. In English we have:

I will write the letter next week.
Next week I will write the letter.

Think about the “alignment” of these two sentences (i.e., think of the first one as
the French sentence). The correct alignment is < 3,4,5,6,1,2 >. In general, the
probability that Ag = 2, as here, is low. However, if we knew that As = 1, then it
is much more likely. So distortion probabilities are not really independent of each
other. In section we show a clever way to handle these dependencies. For now
we simply note that, although assuming that alignment probabilities are mutually
independent is not great, it is certainly better than assuming they are all equal.

If we now substitute our alignment probability from Equation [2.18]into
Equation [2.18] we get:

P(fle) = ) Plale)P(f|ae)
= nl,mz H 5ak,k,l,m Teay,fr* (2.20)

a k=1
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Note how similar this new equation is to our IBM model 1 equation,
Equation 2.5l Before we multiplied all of the translation probabilities to-
gether. Now we do the same thing, but multiply in one alignment probability
for each translation probability. Furthermore, this similarity carries over to
our fractional count equation. The new equation replacing Equation [2.9
makes the identical transformation:

Teay oS Oakolsm

(2.21)

n + = .
€y, fr Z?:o Ter i 55kt
Thus to learn IBM model 2 parameters we do the same thing we did for
IBM 1, with some small differences. First, we need to pick initial values for §
as well (all equal as before). Second, to get the fractional counts we multiply
in the ds as in Equation [2.21] Last, the fractional counts thus obtained are
used to get new counts not only for the 7 but for the ¢ as well.

Once we have the proof that we have correctly computed model 1 ex-
pected counts, only a small change will show that model 2 is correct as well.
Note that the assumption that all alignments were equal came in only at the
very last step, going from Equation to Equation But for model 2
we have:

P(Ay=jle,m) # P(Ax=j'le,m)
= jklm-
Substituting the s into Equation [2.16] we get Equation and we are
done.

As we have already noted, in general EM is not guaranteed to find esti-
mates of the parameters that maximize the probability of the data. It may
find a local maximum but not the global one. As remarked in Section [2.2.3
IBM 1 has only has one maximum and thus we are guaranteed to find it as
long as none of the initial estimates are zero. This is not true for IBM 2 —
the initial estimates matter.

In practice, we start EM ignoring the ds. That is, we set them all equal,
but do not update them for several iterations — long enough for the 7s to
be “burned in” with reasonable values. Only then do we start collecting
fractional counts for the ds and resetting them in the E-step. In practice
this tends to find very good estimates.

2.4 Phrasal machine translation

Beyond IBM model 2 lie 3, 4, and 5. While they are important, certainly the
most important difference between the MT we have presented and MT as
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bread °
the °
eat °
not ° °
do
I °
Je ne mange pas le pain

Figure 2.7: A graph of the alignment for the (f)/(e) pair
‘Je ne mange pas le pain’ and ‘I do not eat the bread’

it is practiced today is the introduction of phrases into machine translation
— something not found in any of the IBM models.

You remember that IBM models 1 and 2 share the assumption that each
French word is triggered by exactly one English word. This is captured by
the alignments we introduced early in our discussion. Each alignment ties a
French word to one, and only one English word (though it may be the null
word).

Unfortunately, this assumption is far from correct. Consider the follow-

ing (f)/(e) pair:

Je ne mange pas le pain
I do not eat the bread

The best alignment is:
<1,3,4,3,5 6>

‘Je’, ‘mange’, ‘le’, and ‘pain’ align with ‘I’, ‘eat’, ‘the’ and ‘bread’ respec-
tively. Both ‘ne’ and ‘pas’ align with ‘not’. Figure shows a graph of this
alignment, with the French words along the x axis and the English along
the y axis. We have put a dot at the (x, y) position when a, = y.

Notice that nothing aligns with the English word ‘do’. This is problem-
atic when we want to translate, and here is where phrasal alignments kick
in. We start the same way, but then we also do the reverse alignment —
align each English word to exactly one French word. We do this by creating
a second noisy-channel model, this time for computing P(e | f) rather than
the P(f | e) we have been computing so far. Nothing in the IBM models
cares about which language is which, so in principle this should be as simple
as flipping the sentence pairs in the parallel corpus.

Going back to our ‘do’ example, an English-to-French alignment might
be:
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bread o+

the o}

eat o}

not

do

I o
Je ne mange pas le pain

o+

+ e

Figure 2.8: Both English to French and French to English alignments

<1,2,4,3,5 6>

This is similar to the French-to-English, except this time we are forced to
align ‘do’” with something. In our example we have chosen to align it with
‘ne’. (Another possibility would be to align it to the null French word. This
choice is not critical to our discussion.)

In Figure we superpose the two alignments, representing the second
alignment with the +’s. The figure clarifies a few things. First, ‘Je/I’,
‘le/the’, and ‘pain/bread’ are in good shape. In each case there is a one-for-
one alignment, and furthermore the alignment matches up with the words
on at least one side. By this we mean that ‘Je’ and ‘I’ are both preceded
by the start of sentence, ‘le’ and ‘the’ are both followed by words that
are themselves aligned (‘pain’ and ‘bread’), and these last two words are
preceded by aligned words and followed by the end of the sentence. This
suggests that these words are reasonably translated in a one-to-one fashion.

None of the other words have this property. In particular, the relation
between ‘ne mange pas’ and ‘do not eat’ is messy, and the words at their
ends do not match up nicely with the words that precede/follow them. On
the other hand, suppose we treat ‘ne mange pas’ as a single phrase that
should be translated into ‘do not eat’ as a whole, not word for word. While
the words within it do not match up very well, the phrases ‘ne mange pas’
and ‘do not eat’ match well in exactly the same way that the ‘good’ words
do: they are preceded and followed by good matches. That is the second key
idea of phrasal MT — use graphs like that in Figure [2.8| as clues that some
sequence of words should be aligned not individually but as phrases. We
then keep alignment counts for these phrases, just as we did for individual
words. Finally, at translation time we treat such phrases as if they were
single words.

Unfortunately, this simple version of phrasal MT does not work very
well. We show here two ways in which we have grossly oversimplified things.
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First, the example in Figure [2.8] was deliberately chosen to be simple. In
real examples, the graph of alignment pairs can get very messy and our
vague description of how to find phrases would end up, say, aligning entire
sentences as a single phrase. Second, even if we are lucky and never get
phrases longer than, say, four words, the number of four-word phrases is
very, very large, and there are not sufficient parallel corpora for us to collect
statistics on even a fraction of what can occur. So we do not see merely
‘ne mange pas’ and ‘do not eat’. Virtually any French verb and its English
translation could be substituted here. What we really need to do is recog-
nize that there is a pattern of the form ‘ne french_verb pas’ that becomes
‘do not English verb’ This is exactly what a real implementation does,
but exactly how it works differs from system to system.

Actually, what we ought to do is to consider all possible phrasal transla-
tions and then, say, use EM to pick out good ones, just as we did for single
words. Unfortunately this is not possible. Suppose we have a FE pair with
each sentence thirty words long. How many phrasal pairs are there? Well, if
we assume that phrases are always made up of contiguous words, there are
229 possible phrases for the English, and the same number for the French.
(Show this!) If each English phrase can align with any of the French ones,
we get 229 squared possibilities, or 2°® combinations. This is a seriously big
number. So any method, such as EM, that requires simultaneously storing
all expectations is out of the question. We come back to this point near the
end of the book.

2.5 Decoding

There is, of course, one major problem with our MT efforts so far. We
can gather probabilities, but we don’t know how to use them to translate
anything.

In this section we rectify this situation. However, rather than calling this
section “translation,” we call it “decoding,” as this is what it is called in the
MT community. The reason for this odd nomenclature is the origin of our
fundamental theorem of MT, Equation [2.1, which is a particular instance of
the noisy-channel model. As its name implies, the noisy-channel model was
invented to overcome problems of noise on a communication channel. The
key to all solutions to this problem is to encode the message in some way
so as to make it possible to reconstruct the message even if noise obliterates
portions of it. The process of finding the message from the coded version
sent over the channel is, naturally enough, called “decoding.” Since when
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viewed as a noisy-channel problem MT imagines that a message originally
written in our target, say English, arrived written in the source, say French,
the problem of getting the English from the French is thus a “decoding”
problem.

The MT decoding problem is, in its most general form, very difficult.
Consider again the MT fundamental equation (2.1)) repeated here:

argmgxP(e | f) = argmgxP(e)P(f | e).

We have now shown how to get the required language model P(e) and
translation model P(f | e), but solving the equation requires iterating over
all possible English sentences — a daunting task. (For those of you who
have taken a computational theory class, the problem is NP-hard.)

2.5.1 Really dumb decoding

As a general rule it is almost always worth doing something really simple
before trying to do something very hard. Sometimes the dumb method
works and you save a lot of work. More often it doesn’t, but you gain some
insight into the problem.

Here is our first feeble attempt. All this time we have been using EM to
estimate P(f | e). Let’s redo the programs to compute P(e | f). We then
take our French sentence and for each French word substitute the English
word t( f) which we define as

t(fs) = argmax P(e | fy).

So t(f;) is a function from a French word f; to the English word e that is its
most likely translation out of context. Then the translation of the sentence
f is the concatenation of ¢(fy) for 1 < i < m. Now the 7’s estimate P(e | f)
rather than P(f | e). Finding these is really easy. Just take the program
you had earlier, and switch the input files! That’s it.

Unfortunately the results are pretty bad.

Example 2.13: Looking at the output of such a very simple decoder is a good
way to appreciate the complexities of MT. We start with an example where things
go relatively well, and then descend rapidly into the realm of unfunny machine-
translation jokes. (The classic, which is surely apocryphal, is that the Russian
equivalent of “The spirit is willing but the flesh is weak” came out as “The vodka
is good but the meat is rotten”.)

English: That is quite substantial .
French: Ce est une somme considerable .
MT output: That is a amount considerable .

DRAFT of 27 January, 2016, page 61



62 CHAPTER 2. MACHINE TRANSLATION

Here the program got it right except for the reversal of ‘amount considerable’.

English: I disagree with the argument advanced by the minister .
French: Je ne partage pas le avis de le ministre .
MT output: I not share not the think of the Minister .

‘Je ne partage pas’ means ‘I do not share.” However, the split ‘ne’ and ‘pas’ both
get translated as ‘not’, and the ‘do’ in the English version, which from the French
point of view would be spurious, is not included. ‘Avis’ means ‘opinion’, but one
can easily imagine that it gets translated into a phrase like ‘I think’.

English: I believe he is looking into the matter .
French: Je crois que il est en train de etudier la question .
MT output: I think that he is in doing of look the question .

‘En train de’ means ‘in the process of’ but comes out as ‘in doing of’.

English: My question very briefly is this .
French: Voici tres brievement de quoi il se agit .
MT output: : very briefly of what he is point .

We thought ending with ‘voici’ (‘this’) being translated as a colon would be a nice
touch.

2.5.2 1IBM model 2 decoding

So really simple techniques do not work and we must turn to complicated
ones. To make things more concrete, we consider a decoder for IBM model
2. Unfortunately, while there are standard IBM models 1 to 5, there is no
such thing as a standard decoder for any of them. What we present is as
typical as any, but we cannot say anything stronger.

In one sense, decoding is simple. If we substitute Equation [2.20]into the
MT fundamental theorem, we get:

m
arg max P(e) - nim Z H Oap e lm Teay fi- (2.22)
a k=1

Thus decoding “reduces” to testing every possible English sentence and see-
ing which one is the arg max required in Equation [2.22

Of course, this is not possible. Even if we restrict consideration to En-
glish sentences no longer than the French one, the number of such sentences
grows exponentially with the lengths of the sentences involved. Furthermore,
the problem is “NP hard” — it is (almost certainly) inherently exponential.

We have then a search problem — finding the needle in the haystack.
Fortunately, we computational linguists are not the only people with search
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1. add the empty partial solution (no words translated) to Hy
2. set the probably of the current best answer (P(A)) to zero.
3. fori=1to M

(a) pick the next ranked partial solutions s from H; 4

i. extend s by adding an English word to its end, creating s,
ii. if s’ is a complete sentence then if P(s") = h(s")nm > P(A),
A=¢ P(A)=P(s)
iii. else, if H; has fewer than W entires, or if h(s") > h(Hy ) add
s to H;. (Removing the one with the smallest heuristic value
if necessary to keep the size of H; to W.)

iv. else, discard s’.

4. return A.

Figure 2.9: Beam search algorithm for IBM model 2 decoding

problems. A whole branch of artificial intelligence is devoted to them —
heuristic search. More formally, we have a problem (constructing a sentence)
that requires many steps to complete (selecting English words). There may
be many possible solutions, in which case we have an evaluation metric for
the quality of the solution. We need to search the space of partial solutions
(S) until we find the optimal total solution (the e with highest P(e | f)).
In heuristic search we also have a heuristic, an indication of the relative
quality of partial solutions. In our case we use equation [2.22] on the string
of English words so far, except we ignore 7;,,. We call this quantity h(s).
There is one major problem with this heuristic however — as we add
more English words the probability of the string according to Equation [2.22
tends to decrease rapidly. After all, most any long sentence is going to be less
probable than shorter sentences. Thus we are going to use a beam search.
This will look something like that in Figure 2.9 Here we have a vector of
priority queues priority queue (also known as heaps) H, one for each possible
length of the English sentence e. Priority queues are data structures with
the property that they efficiently store a set of entities s, each with a priority
(h(s)), so we can efficiently find the s with the next highest (or smallest)
priority, and pop it off the queue. We start by putting the empty English
sentence into the queue for zero word sentences, Hy. Then, given the queue
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for H;_1 we pop off the states, extend them by adding a new possible English
word, and put them on H;. Note, however, that we only put them on H;, if
their heuristic value h(s) is sufficiently high, namely greater that h(H;[W]).
Here W is an integer 1 < W known as the beam width. The idea is that we
only save the W highest states to pass on to the i+1’th iteration. Also notice
that we only compare a partial solution of length [ against other solutions
of the same length, thus overcoming the problem that partial solutions have
rappedly decreasing probabilities as their lenghts increase.

We also need to recognize if s’ is a complete sentence. We do this by
assuming that our sentences are padded with < characters, and < is one of
the English words we can add to the end of s. If s’ ends in < we do not put it
on the next queue, but rather compare its value to the best solution we have
seen so far (now multiplying in 7;,, the probability of a French sentence of
lenght m given that our English sentence is of length [).

Next, note that the outermost iteration was for ¢ = 1 to M, the length
of the French sentence. This assumes that we will finding a good English
translation that is no longer than the French sentence. This could be relaxed
by making the upper bound some multiple of M, at the cost of increased
processing time. Also, line i in Figure[2.9)has us adding “an English word” to
the end of s. Note that although any particular English word might appear
several times as translations of different f’s we only will want to consider it
once here. To keep this simple we make a list of all the word types we have
recorded as translations of the words in f

Lastly, Equation has us summing over all possible alignments: This
is exponential, but fortunately we can reverse the order of the sum and
product as we did with EM training to get a polynomial algorithm.

h(e) = P(e)-mm Z H Oay,klm Teayfr

a k=1

m
= P(e) mm H Z Oay k,lim Tej.fi

k=1 j=1

2.6 Exercises

Exercise 2.1: Consider the following English sentences:

The dog drank the coffee.
The man drank the soup.
The coffee pleased the man.
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We have a parallel corpus in Fthishr, a language that loves its coronal frica-
tives and word-final alveolar approximants.

Thir o favezh or shath.
Sirzh o zhiidh or shath.

Favezh or sirzh o vozir.
Give the correct alignment for the sentences

The soup pleased the dog.
Zhiidh or thir o vozir.

Exercise 2.2: Compute the values of n:g,t’ smange’ and Teeat’ ‘mange’ after
the first and second iterations of EM given the following training data:

Elle mange du pain  She eats bread
II mange du boef He eats beef

Exercise 2.3: In Section @ we noted that ne o in general will not be the
same as the number of times the word e appears in the corpus. Explain.

Exercise 2.4: Would < 0,0,0 > be a legal alignment for a French sentence
of length three? (Extra credit: Mention an interesting implication of this)

Exercise 2.5: We suggest starting EM with all 7, ;’s the same. However,
as long as they are the same (and non-zero) any one value works as well
as any other. That is, after the first M-step the 7s you get will not be a
function of the 7s you stated with. For example, you could initialize all
7s to one. Prove this. However, although the 7s at the end of the M-step
would not vary, there would be some other variable inside the EM al rithm
we suggest you compute that would. What is it?

Exercise 2.6: On the first iteration of IBM model 1 training, the word that
would align the most often with ‘pain’ is almost certainly going to be ‘the.’
Why? Yet in Figure we did not mention ‘the’ as a translation of ‘pain.’
Why is that?

Exercise 2.7: In our derivation of Equation [2.13| we stated that since all
alignments are equally probable in IBM model 1 it follows that

P(Ak:j|e) = P(Ak:j/‘e). (2.23)
Actually, this deserves a bit more thought. Note that it is not the case that

First, explain why Equation is false. Then explain why Equation [2.23
is nevertheless true.
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2.7 Programming problems

Problem 2.1: Machine Translation with Very Dumb Decoding

Write an MT program based upon IBM model 1 and our very dumb
decoder, which simply goes through the incoming French sentence and for
each word f; outputs argmax., P(e; | fi).

Start by building an IBM model 1 parameter estimation program. It
takes as arguments two input files, one for the French half of the parallel
corpus, one for the English half. Make sure that your program does not care
which is which, so that by switching the order of the files your program will
switch between computing P(e; | f;) and P(f; | e;).

To initialize EM we assign all translation probabilities the same value.
As noted in Exercise [2.5] you can simply set them to 1. Equation [2.9]tells us
how to compute the fractional counts for each word (the e-step), and then
at the end of each iteration Equation does the m-step. Ten iterations or
so should be sufficient for all the parameter values to settle down.

Before writing the decoder part of this assignment, print out some proba-
bilities for French words with reasonably obvious English translations. Fore-
most should be punctuation. If you do not know any French, you can also
look at the French for words that look like English words and occur several
times. Many French words have been adopted into English.

Finally, the decoder should be just a few lines of code. Two details.
Given the (low) quality of our decoder, only very simple sentences have any
chance of being comprehensible after translation. Omnly translate French
sentences of length ten or less. Also, when your program encounters French
words it has never seen before, just pass them through to the English output
without change.

Use English-senate-0.txt and french-senate-0.txt as the training
data. We are not tuning any smoothing parameters, so there is no particular
need for held-out data. Translate french-senate-2.txt and save your
translation to a new file.

Problem 2.2: MT with a Simple Noisy-Channel Decoder

Now we’ll try to do better. For this assignment use the IBM model 1
decoder from the last programming assignment, but now use it to compute
the reverse translation probabilities, P(f; | ;). In addition, use the English
bigram language model from the programing assignment in Chapter [1} The
only thing that changes is our decoder.

In this version we again translate the French one word at a time. Now,
however, rather than maximizing P(e; | f;), we maximize P(e; | ej—1)P(f; |
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ej). As we are going left to right one word at a time, we will know the
previous English word at each step. (Set the zeroth word to 1.)
Use the same training and test data as in Problem 1.

Problem 2.3: Evaluation

Evaluate the two different translators according to the F-score of their
output. The F-score is a standard measure of accuracy defined as the har-
monic mean of precision and recall:

oo p?“ec.zs.zon - recall . (2.25)
precision + recall

Precision is the number of correct results divided by the number of all re-
turned results, and recall is the number of correct results divided by the
number of results that should have been returned. In this case, we are
counting the number of individual word tokens translated correctly. You
may consider a translation of the word “pain” in french-senate-2.txt to
“bread” as correct if “bread” occurs anywhere in the corresponding sen-
tence in english-senate-2.txt. The total number of returned results
is, of course, the word-token count of your translated output file (which
will be exactly the same as that of french-senate-2.txt), and the num-
ber of results that should have been returned is the word-token count of
english-senate-2.txt.

Which translation looks better to you (this is a rather subjective ques-
tion)? Which gives the better F-score? Why? What does this tell us about
our two different decoders? What about our chosen method of evaluation?

Include the answers to these questions in your README.

2.8 Further reading

For the most part, the best key words for MT are the obvious ones used in
this chapter. However, if you want to download the Canadian Hansard Cor-
pus, use this as the search key in a typical search engine; Google Scholar will
list only papers citing the corpus. Another corpus is the Furoparl Corpus.

You might want to try out an open-source machine translation system.

A recent trend is grammar-based machine translation, also called hierar-
chical phrase-based MT. The most frequent out-of-vocabulary items in MT
are names of people and places. The best way to handle them is to learn
how to transliterate them to get English equivalents.

One big problem is translation of a low-resource language indexlow-
reseource languages — a language for which there are few parallel corpora.
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One way to do this is to use a bridging language — a language similar to
the low-resource target for which we have much more data. For example, to
help translate Portuguese, use data from Spanish, or for Slovak, use Czech.

Finally, we would be remiss if we did not mention one of the best tutorials
on MT, Kevin Knight’'s MT Workbook. The material covered is much the
same as that in this chapter, but from a slightly different point of view. It
is also enjoyable for Kevin’s wacky sense of humor.
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