
Chapter 4

Parsing and PCFGs

4.1 Introduction

In natural languages like English, words combine to form phrases, which
can themselves combine to form other phrases. For example, in the sentence
“Sam thinks Sandy likes the book”, the words ‘the’ and ‘book’ combine to
form the noun phrase (NP) ‘the book’, which combines with the verb ‘likes’
to form the verb phrase (VP) ‘likes the book’, which in turn combines with
‘Sandy’ to form the embedded clause or sentence (S) ‘Sandy likes the book’.
Parsing, which is the process of recovering this kind of structure from a string
of words, is the topic of this chapter.

4.1.1 Phrase-structure trees

It’s natural to represent this kind of recursive structure as a tree, as in
Figure 4.1. They are called phrase-structure trees because they show how
the words and phrases combine to form other phrases.

Notice that trees such as this are usually drawn upside-down, with the
root node at the top of the tree. The leaf nodes of the tree (at the bottom,
of course!), which are labeled with words, are also known as terminal nodes.
The sequence of labels on the terminal nodes is called the terminal yield
or just the yield of the tree; this is the string that the tree describes. The
nodes immediately dominating (i.e., above) the terminal nodes are called
preterminal nodes; they are labeled with the word’s part-of-speech (the same
parts-of-speech that we saw in the previous chapter). The phrasal nodes are
above the preterminals; they are labeled with the category of the phrase
(e.g., ‘NP’, ‘VP’, etc.). As you would expect, the nonterminal nodes are all
of the nodes in the tree except the terminal nodes.
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Figure 4.1: A phrase-structure tree for the sentence “Sam thinks Sandy
likes the book”. The labels on the nonterminal nodes indicate the category
of the corresponding phrase, e.g., ‘the book’ is an ‘NP’ (Noun Phrase).

Parsing is the process of identifying this kind of structure for a sentence.
It is one of the best-understood areas of computational linguistics. Arguably
the best. The literature is very large, and, at least if you are parsing news-
paper articles, several good parsers are downloadable from the web.

The best “real world” use of parsing today is in machine translation,
for translating between languages with radically different word orders. One
might try to view translation as a kind of “rotation” of phrase structure
trees (viewed as a kind of mobile sculpture). In the last couple of years this
has been shown to work, and now major English-Japanese MT programs
use this approach.

This success to some degree justifies the emphasis on parsing, but there
was never much doubt (at least among “parsing people”) that the area would
one day come into wide usage. The reason is simple: people can understand
endless new sentences. We conclude from this that we must understand
by building the meaning of whole sentences out of the meaning of sentence
parts. Syntactic parsing (to a first approximation) tells us what those parts
are, and roughly in what order they combine. (Examples like Figure 4.1
should make this seem plausable.) Unfortunately we computational lin-
guists know little of “meanings” and how they combine. When we do, the
importance of parsing will be much more obvious.

It’s convenient to have a standard (one dimensional) notation for writing
phrase structure trees, and one common one is based on the bracketted
expressions of the programming language Lisp. Figure 4.2 gives the same
tree as in Figure 4.1 in bracket notation.
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(S (NP (NNP Sam))

(VP (VBZ thinks)

(S (NP (NNP Sandy))

(VP (VBZ likes)

(NP (DT the)

(NN book))))))

Figure 4.2: The phrase structure tree of Figure 4.1 for
‘Sam thinks Sandy likes the book’ in bracket notation. Note that the in-
dentation is purely for aesthetic reasons; the structure is indicated by the
opening and closing brackets.

Sam thinks Sandy likes the book

SUBJ

COMP OBJ

SPECSUBJ

Figure 4.3: A dependency tree for the sentence “Sam thinks Sandy likes
the book”. The labels on the arcs indicate the type of dependency involved,
e.g., ‘Sandy’ is the subject of ‘likes’.

4.1.2 Dependency trees

The phrase-structure tree does not directly indicate all of the structure that
the sentence has. For example, most phrases consist of a head and zero or
more dependents. Continuing with the previous example, ‘likes’ might be
analysed as the head of the VP ‘likes the book’ and the S ‘Sandy likes the book’,
where the NPs ‘the book’ and ‘Sandy’ are both dependents of ‘likes’.

A dependency tree makes these dependencies explicit. The nodes in the
dependency tree are the words of the sentence, and there is an arc from
each head to the heads of all of its dependent phrases. Figure 4.3 depicts
a dependency tree for ‘Sam thinks Sandy likes the book’. Sometimes the
dependency arcs are labeled to indicate the type of dependency involved;
e.g., ‘SUBJ’ indicates a subject, ‘OBJ’ indicates a direct object and ‘COMP’
indicates a verbal complement.

Of course the phrase-structure tree and the dependency tree for a sen-
tence are closely related. For example, it is straightforward to map a phrase-
structure tree to an unlabeled dependency tree if one can identify the head
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Figure 4.4: A discontinuous structure in English

of each phrase.
There is much more to say about both phrase structure and depen-

dency structure, but we only have space to make a few comments here.
Most importantly, there is no agreement on the correct grammar even for a
well-studied language like English. For example, what’s the structure of a
sentence like ‘the more, the merrier’?

It is not even clear that trees are the best representation of phrase struc-
ture or dependency structure. For example, some sentences have discontinu-
ous phrases, which often correspond to nonprojective dependency structures
(i.e., dependency structures with crossing dependencies). While these are
more common in languages with relatively free word order such as Czech,
there are English constructions which plausibly involve such discontinuities.
However, as we will see in this chapter, there are such significant computa-
tional advantages to only considering structures that can be represented as
trees that it is common to do so.

Example 4.1: Figure 4.4. shows an English example involving nonprojective
structure. The phrase ‘a book with a red cover’ is discontinuous in this example
because it is interrupted by ‘yesterday’. Such cases are called “nonprojective”
because when projected onto the plane they shows up as “crossing lines” in the
phrase structure tree and the dependency structure.

In the face of puzzles and disagreements there are two ways to go, try to
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resolve them, or ignore them. Work in statistical parsing has mostly done
the latter. Dedicated linguists and computational linguists have roughed out
grammars for some languages and then hired people to apply their grammar
to a corpus of sentences. The result is called a tree bank. To the degree that
most grammatical formalisms tend to capture the same regularities this can
still be a successful strategy even if no one formalism is widely preferred
over the rest. This seems to be the case.

4.2 Probabilistic context-free grammars

Probabilistic Context-Free Grammars (PCFGs), are a simple model of phrase-
structure trees. We start by explaining what a formal language and a gram-
mar are, and then present context-free grammars Context-Free Grammars
and PCFGs (their probabilistic counterpart).

4.2.1 Languages and grammars

A formal language is a mathematical abstraction of a language. It is defined
in terms of a terminal vocabulary, which is a finite set V of terminal symbols
(or terminals for short), which are the atomic elements out of which the
expressions of the language are constructed. For example V might be a set
of English words, or it could be the characters ‘a’–‘z’ (e.g., if we wanted to
model the way that words are built out of letters).

Given a set V of terminals, W = V⋆ is the set of all finite sequences or
strings whose elements are members of V . (V⋆ also includes the empty string
ǫ). A language is a subset of W. A grammar is a finite specification of a
language. (A language can contain an infinite number of strings, or even
if it is finite, it can contain so many strings that it is not practical to list
them all). A probabilistic language is a probability distribution over W, and
a probabilistic grammar is a finite specification of a probabilistic language.
(We will often drop the “probabilistic” when clear from the context).

A grammar may also provide other information about the strings in
the language. For example, it is common in computational linguistics to
use probabilistic grammars whose support is W (i.e., they assign non-zero
probability to every string in W), and whose primary purpose is to associate
strings with their phrase-structure trees.
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V = {book, likes, Sandy, Sam, the, thinks}

N = {DT,NNP,NP, S,VBZ,VP}

S = S

R =





DT → the NN → book
NNP → Sam NNP → Sandy
NP → NNP NP → DT NN
S → NP VP VBZ → likes
VBZ → thinks VP → VBZ NP
VP → VBZ S





Figure 4.5: A context-free grammar which generates the phrase-structure
tree depicted in Figure 4.1. The start symbol is ‘S’.

4.2.2 Context-free grammars

A context-free grammar is perhaps the simplest possible model of phrase-
structure trees. Formally, a context-free grammar (CFG) is a quadruple
G = (V ,N , S,R), where V and N are disjoint finite sets of terminal symbols
and nonterminal symbols respectively, S ∈ N is a distinguished nonterminal
called start symbol, and R is a finite set of rules or productions. A rule
A → β consists of a parent nonterminal A ∈ N and children β ∈ (N ∪ V)⋆.
Figure 4.5 contains an example of a context-free grammar.

A production of the formA → ǫ, where ǫ is the empty string, are called an
epsilon rule. A CFG that does not contain any epsilon rules is epsilon-free.
While everything we say about CFGs in this chapter generalizes to CFGs
that contain epsilon productions, they do complicate the mathematical and
computational treatment, so for simplicity we will assume that our grammars
are epsilon-free.

Context-free grammars were originally thought of as a rewriting sys-
tem, which explains the otherwise curious nomenclature and notation. The
rewriting process starts with a string that contains only the start symbol ‘S’.
Each rewriting step consists of replacing some occurence of a nonterminal
A in the string with β, where A → β ∈ R is a rule in the grammar. The
rewriting process terminates when the string contains no nonterminals, so
it is not possible to apply any more rewriting rules. The set of strings that
can be produced in this way is the language that the grammar specifies or
generates.
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S
NP VP
NNP VP
Sam VP

Sam VBZ S
Sam thinks S

Sam thinks NP VP
Sam thinks Sandy VP

Sam thinks Sandy VBZ NP
Sam thinks Sandy likes NP

Sam thinks Sandy likes DT NN
Sam thinks Sandy likes the NN
Sam thinks Sandy likes the book

Figure 4.6: A derivation of ‘Sam thinks Sandy likes the book’ using the
context-free grammar presented in Figure 4.5 on page 106.

Example 4.2: Figure 4.6 gives a derivation of the string “Sam thinks Sandy likes
the book” using the grammar of Figure 4.5.

The derivational view of context-free grammars also explains why they
are called “context-free”. A context-sensitive grammar differs from a context-
free one in that the rules come with additional restrictions on the contexts
in which they can apply.

Even though historically context-free grammars were first described as
rewriting systems, it is probably more useful to think of them as specifying
or generating a set of phrase-structure trees. The rules of a context-free
grammar can be seen as specifying the possible local trees that the tree can
contain, where a local tree is a subtree that consists of a parent node and
its sequence of children nodes.

Given a tree bank we first divide it into a train/development/test split,
and then using the training set to specify the grammar (by reading off the
local trees), and when testing, accepting whatever the tree bank says as the
gold standard.

In more detail, a context-free grammar G = (V ,N , S,R) generates a
tree t iff t’s root node is labeled S, its leaf nodes are labeled with terminals
from V , and for each local tree ℓ in t, if ℓ’s parent node is labeled A and its
children are labeled β, then R contains a rule A → β. The set of all trees
that G generates is TG, where we will drop the subscript when clear from
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108 CHAPTER 4. PARSING AND PCFGS

the context. G generates a string w ∈ W iff G generates a tree that has w
as its terminal yield.

Example 4.3: The CFG in Figure 4.5 on page 106 generates the phrase-structure
tree depicted in Figure 4.1 on page 102, as well as an infinite number of other trees,
including trees for rather bizarre sentences such as ‘the book thinks Sam’ as well
as impeccable ones such as ‘Sandy likes Sam’.

Parsingis the process of taking a CFG G and a string w and returning
the subset TG(w) of the trees in TG that have w as their yield. Note that
TG(w) can contain an infinite number of trees if R has epsilon productions
or unary productions (i.e., productions of the form A → B for A,B ∈ N),
and even if TG(w) is finite its size can grow exponentially with the length of
w, so we may be forced to return some kind of finite description of TG(w)
such as the packed parse forest of section 4.3.

One way to think about a CFG is as a kind of “plugging system”.
We imagine that our terminal and nonterminal symbols are different plug
shapes, and that our goal is to somehow connect up a sequence of termi-
nal plugs to a single socket labeled with the start symbol S. Each rule
A → β ∈ R is a kind of adaptor (maybe a bit like a surge suppressor board)
that has a sequence of sockets β and a plug A. When parsing our goal is to
find a way of connecting up all of the terminals via the rules such that there
are no unconnected plugs or sockets, and everything winds up plugged into
the start socket S.

4.2.3 Probabilistic context-free grammars

Probabilistic Context-Free Grammars (PCFGs) extend context-free gram-
mars by associating a probability ρA→β with each rule A → β ∈ R in the
grammar. Informally, ρA→β is the conditional probability that the nonter-
minal A expands to β. The probability of a tree generated by the PCFG
is just the product of the probabilities of the rules used to derive that tree.
PCFGs are generative probability models in the sense we described in Sec-
tion 1.3.3. The above description of how trees are generated in a CFG is
their generative story.

More formally, a PCFG G is a quintuple G = (V ,N , S,R,ρ) where
(V ,N , S,R) is a CFG and ρ is a vector of real numbers in [0, 1] that satisfies:

∑

A→β∈RA

ρA→β = 1 (4.1)

where RA = {A → β ∈ R} is the set of all rules in R whose parent is A.
This condition is natural if we interpret ρA→β as the conditional probability
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ρDT→the = 1.0 ρNN→book = 1.0
ρNNP→Sam = 0.7 ρNNP→Sandy = 0.3
ρNP→NNP = 0.2 ρNP→DT NN = 0.8
ρS→NP VP = 1.0 ρVBZ→likes = 0.4
ρVBZ→thinks = 0.6 ρVP→VBZ NP = 0.9
ρVP→VBZ S = 0.1

Figure 4.7: The rule probability vector ρ which, when combined with
CFG in Figure 4.5 on page 106, specifies a PCFG which generates the tree
depicted in Figure 4.1 on page 102 with probability approximately 3×10−4.

of A expanding to β. It simply says that the probabiltities of all of the rules
expanding A sum to one. Figure 4.7 gives an example of ρ for the CFG
presented earlier in Figure 4.5 on page 106.

A PCFG G defines a probability distribution PG(T ) over trees T ∈ TG
as follows:

PG(T = t) =
∏

A→β∈R

ρA→β
nA→β(t)

where nA→β(t) is the number of times the local tree with parent labeled A
and children labeled β appears in t. (This is equivalent to saying that the
probability of a tree is the product of the probabilities of all the local trees
that make it up.) If TG(w) is the set of trees generated by G with yield w,
then we define PG(w) to be the sum of the probability of the trees in TG(w),
i.e.,

PG(W = w) =
∑

t∈TG(w)

P(T = t) (4.2)

Finally, note that PG may not define a properly normalized probability
distribution on T or W. Figure 4.8 presents a simple PCFG for which∑

t∈T P(t) < 1; intuitively this is because this grammar puts its mass on
“infinite trees”. Fortunately it has been shown that such cases cannot occur
for a very wide class of grammars, including all the ones we allude to in this
book.

4.2.4 HMMs as a kind of PCFG

PCFGs are strictly more expressive than the HMMs we saw in the previous
chapter. That is, for each HMM there is a PCFG that generates the same
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V = {x}

N = {S}

S = S

R = {S → S S S → x}

ρ = (ρS→S S = 0.7, ρS→x = 0.3)

Figure 4.8: A PCFG for which the tree “probabilities” P(t) do not sum to
1. Informally, this is because this grammar puts non-zero mass on infinite
trees.

language (with the same probabilities) as the HMM. This parallelism goes
further; the algorithms we presented for HMMs in the last chapter can be
viewed as special cases of the algorithms for PCFGs that we present below.

Recall that an HMM H is defined in terms of a set of states Y, a state-
to-state transition matrix σ, where σy,y′ is the probability of a transition
from y to y′, and a state-to-output matrix τ , where τy,v is the probability of
emitting output v from state y. Given an HMM G, we can define a PCFG
GH that generates the same probabilistic language as H as follows. Let Y ′

be the set of HMM states except for the begin and end states ‘⊲’ and ‘⊳’.
Then set GH = (V ,N , S,R, ρ) where V is the same terminal vocabulary
as the HMM, N = {S} ∪ {Ay, By : y ∈ Y ′} where Ay and By are unique
symbols distinct from S and each element of V . R consists of all rules of
the form S → Ay, Ay → By Ay′ , Ay → By and By → v, for all y, y′ ∈ Y ′

and v ∈ V , and ρ is defined as follows:

ρS→Ay = σ⊲,y ρAy→By Ay′
= σy,y′

ρAy→By = σy,⊳ ρBy→v = τy,v

Example 4.4: Figure 4.9 shows a parse tree (writen in the form normal for a
parse tree) generated from the PCFG corresponding to the example HMM presented
in Section 3.3 on page 74. However, the corespondence to HMMs is perhaps clearer
if we write the parse tree “on its side” as in Figure 4.10. This figure should also
make the above probability rules clearer — e.g, why ρS→Ay

= σ⊲,y.

Grammars such as these are called right-linear (“linear” means that ev-
ery rule contains at most one nonterminal symbol, and “right-linear” means
that that this nonterminal appears rightmost in the list of the rule’s chil-
dren). We’ve just seen that every HMM generates the same language as
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Figure 4.9: A parse tree generated by the PCFG corresponding to the
HMM presented in the previous chapter.
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Figure 4.10: The same parse tree writen on its side, along with the Bayes
net for the corresponding HMM
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some right-linear PCFG, and it’s possible to show that every right-linear
PCFG generates the same language as some HMM, so HMMs and right-
linear PCFGs can express the same class of languages.

4.2.5 Binarization of PCFGs

Many of the dynamic programming algorithms for CFGs and PCFGs require
that their rules be in a special form that permits efficient processing. We
will say that a (P)CFG is binarized iff all of its productions are all instances
of the following schemata:

A → v : A ∈ N , v ∈ V (terminal rules)
A → B C : A,B,C ∈ N (binary rules)
A → B : A,B ∈ N (unary rules)

Grammars in which all rules are either terminal rules or binary rules are
said to be in Chomsky normal form. It turns out that for every PCFG G
without epsilon rules there is another PCFG G′ in Chomsky normal form
that generates the same language as G.

Binarized PCFGs are less restrictive that Chomsky normal form because
they also permit unary rules (in addition to terminal and binary rules). It
turns out that every epsilon-free PCFG G has a corresponding binarized
PCFG G′ that generates the same language as G, and that the trees gen-
erated by G′ correspond 1-to-1 with the trees of G. This means that we
can map the trees generated by G′ to trees generated by G. So in our algo-
rithms below, given a grammar G we find an equivalent binarized grammar
G′ which we use in algorithm, and then map its output back to the trees of
original grammar G.

There are many ways of converting an arbitrary PCFGG to an equivalent
binarized PCFG G′, but we only describe one of the simplest algorithms
here. The key idea is to replace a rule with three or more symbols on the
right with several binary rules that accomplish the same thing. So the rule
‘A → B C D’ would be replaced by

A → B C D
B C → B C

The new symbol ‘B C’ can only expand one way, so whenever we use the
first of these rules, we always end up with the correct three symbols in our
parse.

More formally the binarized PCFG G′ = (V ,N ′, S,R′, ρ′) has the same
terminal vocabulary and start symbol as G = (V ,N , S,R, ρ), but G′ has
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Figure 4.11: A tree generated by a non-binary CFG, and a tree generated
by its binarized counterpart

many more nonterminal symbols and rules than G does, e.g., B C. So the
non-terminal set N ′ consist of N plus all non-empty proper prefixes of the
rules of G. (A proper prefix of a string β is a prefix of β that does not include
all of β). We’ll write β1:i for a symbol concatenating β1, . . . , βi of β. This
method is called right-branching binarization because all of the branching
occurs along the right-hand-side spine.

Figure 4.11 depicts a tree generated by a non-binarized CFG as well as
its binarized counterpart.

More precisely, the rules for defining a binarized grammar G′ is given
in Figure Figure 4.12. Unary and binary rules probabilities go through
untouched. Interestingly, larger rules retain their exactly probabilities as
well. So the probability for, say, NP → DT JJ JJ NN (“the large yellow
block”) is unchanged from that of the original rule (NP → DT JJ JJ NN).
The probability of the extra rules introduced by the process, e.g., (DT JJ JJ
→ DT JJ JJ) are all one. This makes sense since there is only one thing
that DT JJ JJ can expand into, and thus the probability that it will expand
that way is one. This means that the sequence of rule expansions that are
required in the binarization case have the same probability as the single
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N ′ = N ∪ {β1:i : A → β ∈ R, 1 < i < |β|}

R′ =





A → v : A → v ∈ R
A → B : A → B ∈ R
A → β1:n−1 βn : A → β ∈ R, |β| > 1
β1:i → β1:i−1 βi : A → β ∈ R, 1 < i < |β|





ρ′ =





ρ′A→v = ρA→v : A → v ∈ R
ρ′A→B = ρA→B : A → B ∈ R
ρ′A→β1:n−1 βn

= ρA→β : A → β ∈ R

ρ′β1:i→β1:i−1 βi
= 1 : A → β ∈ R, 1 < i < |β|





Figure 4.12: Rules for defining a binarized PCFG from an unbinarized ver-
sion

probability in the unbinarized grammar. Also note that different nary rules
may share the helper binarized grammar rules. e.g., the rule (NP → DT
JJ JJ NNS) (NNS is plural common noun) has the binarization (NP →
DT JJ JJ NN), and make use of the rules for expanding DT JJ JJ.

Lastly, two points that we come back to in Section 4.7. First, as should
already be obvious, binarization dramatically increases the size of the non-
terminal vocabulary. Secondly, for the particular binarization method we
choose, a new binary non-terminals may never appear as the second non-
terminal in a binary rule, only the first. This has implications for efficient
parsing.

4.3 Parsing with PCFGs

This section describes how to parse a string w ∈ W with a PCFG G. In
practice most probabilistic grammars are designed to generate most or all
strings in W, so it’s not interesting to ask whether w is generated by G.
Similarly, the set TG(w) will typically include a very large number of trees,
many of which will have extremely low probability. Instead, we typically
want to find the most likely tree t̂(w) for a string w, or perhaps the set of the
m most-likely trees (i.e., the m trees in TG(w) with maximum probability).

t̂(w) = argmax
t∈TG(w)

PG(T = t | W = w)

= argmax
t∈TG(w)

PG(T = t,W = w)
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(However, if we intend to use G as a language model, i.e., to predict the prob-
ability of a string w, we want to implicitly sum over all TG(w) to calculate
PG(w), as in equation 4.2).

If w is very short and G is sufficiently simple we might be able to enu-
merate TG(w) and identify t̂(w) exhaustively. However, because TG(w) can
be infinite (and even when it is finite, its size can be exponential in the
length of w), in general this is not a practical method.

Instead, we show how to find t̂(w) using a dynamic programming algo-
rithm that directly generalizes the algorithm used to find the most likely
state sequence in an HMM given in Section 3.3 on page 74. This algorithm
requires that G be a binarized PCFG. We described in the previous section
how to map an arbitrary PCFG to an equivalent binarized one, so from here
on we will assume that G is binarized. (Note that there are efficient dynamic
programming parsing algorithms that do not require G to be binarized, but
these usually perform an implicit binarization “on the fly”).

It actually simplifies CFG parsing algorithms to use “computer science”
zero-based indexing for strings. That is, a string w of length n is made
up of elements indexed from 0 to n − 1, i.e., w = (w0, w1, . . . , wn−1). A
subsequence or “slice” is defined to be wi,j = (wi, . . . , wj−1), i.e., it goes up
to, but doesn’t include element wj . This in turn is most easily visualized if
you think of the indicies as enumerating the positions between the words.

Example 4.5: The sentence “Sam likes Sandy” with the indicies 0 to 3 would
look like this:

Sam likes Sandy
0 1 2 3

So, e.g., w1,3 = “likes Sandy”.

Just as in the HMM case, we first address the problem of finding the
probability µ(w) = maxt∈T (w) P(t) of the most likely parse t̂(w) of w. Then

we describe a method for reading out the most likely tree t̂(w) from the
dynamic programming parsing table used to compute µ(w).

For a given nonterminal A ∈ N , let µA(i, k) be the probability of the
most likely parse of wi,k when the subtree is rooted in A. Given a string
w to parse, we recursively compute µA(i, k) for all for each A ∈ N and
0 ≤ i < j ≤ |w|. (We use the positions i to k because in a moment we
introduce a position j, i < j < k.)

The traditional visualization for this is a chart. Charts are two dimen-
sional arrays of (i, k). Figure 4.13 shows an empty chart for a three word
string, e.g., “Sam likes Sandy”. Each diamond is a cell of the chart, and
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0,1 1,2 2,3

0,2 1,3

0,3

1 20 3

Figure 4.13: Chart for a string of length three

coresponds to possible span of words. So the bottom left-hand cell will be
filled with terminal and non-terminals that span the words zero to one —
e.g., the first word of the sentence “Sandy”. In the same way, the top center
cell spans the words zero to three. It is always the top center that contains
the start symbol if the string is in the language of the PCFG we are using.
Note that the instructions to fill the chart from bottom up coresponds to
the pseudo-code:

1. for l = 1 to L

(a) for s = 0 to L− l

i. fill cell(s, s+ l)

Filling a cell coresponds to finding the possible terminal and non-terminals
that can span each terminal string (e.g., the third dimension) and determin-
ing their µA(i, k). We want to fill bottom up because filling a cell requires
the entries for all of the cells beneath it. Figure 4.14 shows our chart when
the grammar of Figure 4.5. Note that charts are what we earlier refered
to as a packed parse forest in that they compress an exponential number of
possible trees into a data structure of size N2, where N is the length of the
sentence.

We begin with the case where the grammar is in Chomsky normal form
(CNF), i.e., all rules are terminal or binary, and consider unary rules later.
Our algorithm computes the values of µA(i, k) from smaller substrings to
larger ones. Consider the substrings of w of length 1, i.e., where k = i+ 1.
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likes NP

VP

S

1 20 3

NP
Sam Sandy

Figure 4.14: Chart appropriately filled for “Sam likes Sandy”

If the grammar is in CNF then these can only be generated by a terminal
rule, as the yield of any tree containing a binary branch must contain at
least two words. Therefore for i = 0, . . . , |w| − 1:

µA(i, i+ 1) = ρA→wi
(4.3)

Now we turn to the substrings wi,k of length greater than 1, so k − i > 1.
All of their parse trees must start with a binary branching node, which must
be generated by some rule (A → B C) ∈ R. This means that there must
be a subtree with root labeled B and yield wi,j and another subtree with
root labeled C and yield wj,k. This yields the following equation for µ when
k − i > 1,

µA(i, k) = max
j : i<j<k

A→BC∈RA

ρA→B C µB(i, j) µC(j, k) (4.4)

In words, we look for the combination of rule and mid-point which gives
us the maximum probability for (A) spanning i, k. These probabilities are
simply the probabilities of the two sub-components times the probability of
the rule that joints them to form an A.

Equations 4.3 and 4.4 can be used bottom-up (working from shorter
substrings to longer) to fill in the table µ. After the table is complete,
the probability of the most likely parse is µS(0, |w|). Finding the most
likely parse is straightforward if you associate each entry µA(i, k) with “back
pointers” to the µB(i, j) and µC(j, k) that maximize (4.4).
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Sam wants to leave

VB

VPTO

VP

S

0 1 2 3 4 string positions

µ′
VP,2,4

µS,2,4

Figure 4.15: This figure shows the relationship between µ′ (which only con-
siders trees starting with a terminal or binary rule) and µ (which considers
all trees).

Unfortunately unary rules complicate this simple picture somewhat. If
we permit unary rules the subtree responsible for maximizing µA(i, k) can
consist of a chain of up to |N |−1 unary branching nodes before the binary or
terminal rule is applied. We handle this by introducing µ′

A(i, k), which is the
probability of the most likely parse rooted ofwi,k whose root is labeled A and
expands with a binary or terminal rule. Figure 4.15 shows the relationship
between µ and µ′. Then:

µ′
A(i, i+ 1) = ρA→wi

(4.5)

µ′
A(i, k) = max

j : i<j<k

A→BC∈RA

ρA→B C µB(i, j) µC(j, k) (4.6)

µA(i, k) = max

(
µ′
A(i, k), max

A→B∈RA

ρA→B µB(i, k)

)
(4.7)

Again, the computation needs to be arranged to fill in shorter substrings
first. For each A, i and j combination, (4.5) or (4.6) only needs to be
applied once. But unless we know that the grammar constrains the order
of nonterminals in unary chains, (4.7) may have to be repeatedly applied
up to |N | − 1 times for each i, j combination, sweeping over all unary rules,
because each application adds one additional story to the unary chain.

There are some obvious optimizations here. For example, no nonterminal
produced by binarization can ever appear in a unary chain, so they can be
ignored during the construction of unary chains. If there are no unary chains
of height ℓ for a particular i, j then there are no chains of height ℓ + 1, so
there’s no point looking for them. One can optimize still further: there’s no
point in considering a unary rule A → B to build a chain of height ℓ + 1
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unless there is a unary chain with root B of height ℓ. And there’s no need to
actually maintain two separate tables µ′ and µ: one can first of all compute
µ′
A(i, k) using (4.5) or (4.6), and then update those values to µA(i, k) using

(4.7).
On the other hand, it possible that you already have, say, a constituent

Z built from a chain of length two, but then find a better way to build it
with a chain of height three. Even if this is the only thing added at three,
you have to go on to four, because there could be some other constituent
that will now use the more proable Z to improve its probability. To put it
another way, you keep going until no non-terminal increases its µ.

4.4 Estimating PCFGs

This section describes methods for estimating PCFGs from data. We con-
sider two basic problems here. First, we consider the supervised case where
the training data consists of parse trees. Then we consider the unsuper-
vised case where we are given a CFG (i.e., we are told the rules but not
their probabilities) and have to estimate the rule probabilities from a set of
strings generated by the CFG. (Learning the rules themselves, rather than
just their probabilities, from strings alone is still very much an open research
problem).

4.4.1 Estimating PCFGs from parse trees

This section considers the problem: given a sequence t = (t1, . . . , tn) of parse
trees, estimate the PCFG Ĝ that might have produced t. The nonterminals
N , terminals V , start symbol S and set of rules R used to generate t can be
read directly off the local trees of t, so all that remains is to estimate the
rule probabilities ρ. We’ll use the Maximum Likelihood principle to estimate
these. This supervised estimation problem is quite straight-forward because
the data is fully observed, but we go through it explicitly here because it
serves as the basis of the Expectation-Maximization unsupervised algorithm
discussed in the next section.

It’s straightforward to show that the likelihood of t is:

Lt(ρ) = Pρ(t)

=
∏

A→β∈R

ρ
nA→β(t)
A→β (4.8)

where nA→β(t) is the number of times that the local tree A → β appears in
the sequence of trees t.
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Since ρ satisfies the normalization constraint (4.1) on page 108, (4.8) is
a product of multinomials, one for each nonterminal A ∈ N . Using fairly
simple analysis one can show that the maximum likelihood estimate is:

ρ̂A→β =
nA→β(t)

nA(t)
(4.9)

where nA(t) =
∑

A→β∈RA
nA→β(t) is the number of nodes labeled A in t.

4.4.2 Estimating PCFGs from strings

We now turn to the much harder problem of estimating the rule probabilities
ρ from strings, rather than parse trees. Now we face an estimation problem
with hidden variables. As we have done with other hidden variable esti-
mation problems, we will tackle this one using Expectation-Maximization
(EM).

The basic idea is that given a training corpus w of strings and an initial
estimate ρ(0) of the rule probabilities, at least conceptually we use ρ(0)

to compute the distribution P(t|w) over possible parses for w, and from
that distribution compute the expected value E[nA→β|w] of the statistics
needed in the MLE equation (4.9) to produce an improved estimate ρ. We
iterate this process, ultimately converging on at least a local maximum of
the likelihood.

The key quantity we need to compute in the EM algorithm are the
expected rule counts:

E[nA→β | w] =
∑

t∈TG(w)

nA→β(t) P(t | w)

=
1

P(w)

∑

t∈TG(w)

nA→β(t) P(t)

If the sentences in w are all very short it may be practical to enumerate
all of their parses and compute these expectations this way. But in general
this will not be possible, and we will need to use a more efficient algorithm.
The rest of this section describes the forward-backward algorithm, which
is a dynamic programming algorithm for computing these expectations for
binarized grammars.

To keep matters simple, we will focus on computing the expected counts
from a single string w = (w0, . . . , wn−1). In practice we would compute
the expected counts for each sentence separately, and sum them to get the
expectations for the corpus as a whole.
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B C

w0:i wi:j wj:k wk:|w|

S

βB,i,j βC,j,k

A

αA,i,k

Figure 4.16: The parts of the tree contributing to the inside prob-
abilities βA(i, j) and the outside scores αA(i, j), as used to calculate
E[nA→BC(i, j, k)].

4.4.3 The inside-outside algorithm for CNF PCFGs

Just as we did for parsing, we’ll first describe the algorithm for grammars
in Chomsky Normal Form (i.e., without unary rules), and then describe the
extension required to handle unary rules.

Generalizing what we did for HMMs, we first describe how to compute
something more specific than the expectations we require, namely the ex-
pected number E[nA→BC(i, j, k)|w] of times a rule A → B C to expand an
A spanning from i to k into a B spanning from i to j and a C spanning
from j to k. The expectations we require are obtained by summing over all
string positions i, j and k.

The quantities we need to compute are the inside and outside “probabili-
ties” β and α respectively. These generalize the Backward and the Forward
probabilities used in the EM algorithm for HMMs, which is why we use the
same symbols for them. The scare quotes are there because in grammars
with unary rules outside “probabilities” can be larger than one, and because
of this we will refer to outside scores instead of “probabilities”. Figure 4.16
depicts the parts of a tree that contribute to the inside probabilities and
outside scores.

The inside probability βA(i, j) is the probability of an A expanding to
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wi,j , which is the sum of the probability of all trees with root labeled A and
yield wi,j , i.e.,

βA(i, j) = PA(wi:j)

=
∑

t∈TA(wi:j)

P(t)

The outside socre αA(i, j) is somewhat harder to understand. It is the
sum of the probability of all trees whose yield is w0,iAwj:|w|, i.e., the string
w with wi,j replaced by A. It’s called the outside probability because it
counts only the part of the tree outside of A. Intuitively, it is the sum of the
probability of all trees generating w that include an A expanding to wi,j ,
not including the subtree dominated by A.

The reason why the outside scores can be greater than one with unary
rules is that the tree fragments being summed over aren’t disjoint, i.e., a tree
fragment and its extension wind up being counted. Consider the grammar
with rules S → S and S → x, with ρS→S = ρS→x = 0.5. The outside
trees whose probability is summed to compute αS(0, 1) consist of unary
chains whose nodes are all labeled S, so αS(0, 1) = 1 + 1/2 + 1/4 + . . . = 2.
On the other hand, βS(0, 1) involves summing the probability of similar
unary chains which terminate in an x, so βS(0, 1) = 1/2 + 1/4 + . . . = 1
as expected (since ‘x’ is the only string this grammar generates). For this
section, however we are assuming Chomsky Normal Form grammars, which
do not have unay rules. This simplifies things. In particular the outside
scores are now probabilities.

Since the grammar is in Chomsky Normal Form, β satisfies the following:

βA(i, i+ 1) = ρA→wi

βA(i, k) =
∑

A→B C∈RA

j : i<j<k

ρA→B C βB(i, j) βC(j, k) if k − i > 1

These can be used to compute β in a bottom-up fashion by iterating
from smaller to larger substrings, just like we did for µ in section 4.3 on
page 114. It’s easy to see that βS(0, |w|) = P(w), i.e., the probability of the
string w.

The outside probability α are somewhat more complex.
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B C

S

wi:j wj:k

S

C D

wj:k wk:ℓ

A
βB,i,j

αA,i,k

A

αA,j,ℓ

βB,k,ℓ

Figure 4.17: The two cases corresponding to the terms in the sum in (4.11)
on page 123. Note that the insides of siblings B and D are outside C but
inside A, so their inside probabilities are multiplied by the outside scores of
A and the rule that connects them.

αA(0, |w|) = 1 if A = S and 0 otherwise (4.10)

αC(j, k) =
∑

A→BC∈R
i : 0≤i<j

ρA→B C αA(i, k) βB(i, j)

+
∑

A→C D∈R
ℓ : k<ℓ≤|w|

ρA→C D αA(j, ℓ) βD(k, ℓ) (4.11)

In order to understand these equations, it helps to recognize that if
t is a tree generated by a grammar in Chomsky Normal Form then every
nonterminal node in t is either the root node, and therefore has its α specified
by (4.10), or is either a right child or a left child of some other nonterminal,
and (4.11) sums over these alternatives. In more detail, (4.11) says that
the outside score for the smaller constituent C consists of the sum of the
outside scores for the larger constituent A times the inside probability of its
sibling (either B or D) times the probability of the rule that connects them.
Figure 4.17 depicts the structures concerned in (4.11).

These two equations can be used to compute α, iterating from longer
strings to shorter. The first equation initializes the procedure by setting the
outside probability for the root S node to 1 (all other labels have outside
probability 0).
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Once we have computed α and β, the expected counts are given by:

E[nA→wi
(i, i+ 1) | w] =

αA,i,i+1 ρA→wi

P(w)
(4.12)

E[nA→B C(i, j, k) | w] =
αA,i,k ρA→B C βB,i,j βC,j,k

P(w)
(4.13)

The expected rule counts that we need to reestimate ρ are obtained by
summing over all combinations of string positions, i.e.,

E[nA→w | w] =

|w|−1∑

i=0

E[nA→w(i, i+ 1) | w]

E[nA→B C | w] =
∑

i,j,k :
0≤i<j<k≤|w|

E[nA→B C(i, j, k) | w]

4.4.4 The inside-outside algorithm for binarized grammars

This section sketches how the inside-outside algorithm can be extended to
binarized grammars with unary rules. The key to this is calculating the
scores (i.e., the product of rule probabilities) of all unary chains with root
labeled A and root labeled B for all A,B ∈ N .

In the computation of the most likely parse t̂(w) in section 4.3 on
page 114 we explicitly enumerated the relevant unary chains, and were cer-
tain that the process would terminate because we could provide an upper
bound on their length. But here we want to sum over all unary chains,
including the low probability ones, and if the grammar permits unary cycles
(i.e., nontrivial unary chains whose root and leaf have the same label) then
there are infinitely many such chains.

Perhaps surprisingly, it turns out that there is a fairly simple way to
compute the sum of the probability of all possible unary chains using matrix
inversion. We start by defining a matrix U = UA,B whose indices are
nonterminals A,B ∈ N of the binarized grammar G. (In order to use
standard matrix software you’ll need to map these to natural numbers, of
course).

We setUA,B = ρA→B to be the probability of a unary chain of length one
starting with A and ending with B. Then the probability of chains of length
two is given by U2 (i.e., the probability of a chain of length two starting
with an A and ending with a B is U2

A,B), and in general the probability of

chains of length k is given by Uk. Then the sum S of the probabilities of all
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such chains is given by:

S = 1+U+U2 + . . .

= (1−U)−1

where 1 is the identity matrix (corresponding to unary chains of length zero)
and the superscript ‘−1’ denotes matrix inversion.

With the matrix S in hand, we now proceed to calculate the inside prob-
abilities β and outside scores α. Just as we did in section 4.3 on page 114,
we introduce auxiliary matrices β′ and α′ that only sum over trees whose
root expands with a terminal or binary rule, and then compute their unary
closure.

The equations for the inside probabilites are as follows:

β′
A(i, i+ 1) = ρA→wi

β′
A(i, k) =

∑

A→B C∈RA

j : i<j<k

ρA→B C βB(i, j) βC(j, k) if k − i > 1

βA(i, j) =
∑

B∈N

SA,B β′
B(i, j)

Note that the equation for β is not recursive, so it only needs to be computed
once for each combination of A, i and j (unlike the corresponding unary
closure equation for µ).

The equations for the outside scores are also fairly simple extensions of
those for Chomsky Normal Form grammars, except that the unary chains
grow downward, of course.

α′
A(0, |w|) = 1 if A = S and 0 otherwise

α′
C(j, k) =

∑

A→BC∈R
i : 0≤i<j

ρA→B C αA(i, k) βB(i, j)

+
∑

A→C D∈R
ℓ : k<ℓ≤|w|

ρA→C D αA(j, ℓ) βD(k, ℓ)

αB(i, j) =
∑

A∈N

SA,B α′
A(i, j)

Interestingly, the equations (4.12–4.13) we gave on page 124 are correct
for binarized grammars as well, so all we need is the corresponding equation
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(ROOT

(SQ (MD Would)

(NP (NNS participants))

(VP (VP (VB work) (ADVP (JJ nearby)))

(CC or)

(VP (VP (VB live) (PP (IN in) (NP (NN barracks))))

(CC and)

(VP (VB work))

(PP (IN on) (NP (JJ public) (NNS lands)))))

(. ?)))

Figure 4.18: A correct tree as specified by the tree bank

for unary rules.

E[nA→B(i, j) | w] =
αA(i, j) ρA→B βB(i, j)

P(w)
(4.14)

4.5 Scoring Parsers

The point of a parser is to produce “correct” trees. In this section we
describe how the field measures this, and ultimately assigns a single number,
say, 0.9 (out of 1.0) to grade a parsers performance. Rather than do this in
the abstract, however, it would be more interesting to do this for a particular
parser, say one built directly using the technology we described above.

To start we first need to introduce the Penn treebank, a corpus of about
40,000 sentences (one million words) from the Wall-Street Journal, each
assigned a phrase structure by hand. Figure 4.18 is a (slightly shortened)
tree from this corpus. You might notice the start symbol is not S, but
ROOT because many strings in the tree bank are not complete sentences.
Also notice that punctuation is included in the tree. It is a good idea to
parsing with punctuation left in, as it gives good clues to the correct parse
structure, and parsers uniformly work better with the punctuation than
without it.

After binarizing the trees we can find Maximum Likelyhood rule proba-
bilities as described in Section 4.4.1. We then build a basic parser as layed
out above, and parse a test set we separated in advance. The question we
now answer is, having done this, what is the parser’s “score” and what does
it mean?
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(ROOT

(SQ (MD Would)

(NP (NNS participants))

(VP (VB work)

(ADJP (JJ nearby) (CC or) (JJ live))

(PP (IN in)

(NP (NP (NN barracks) (CC and) (NN work))

(PP (IN on) (NP (JJ public) (NNS lands))))))

(. ?)))

Figure 4.19: An incorrect tree for the example in Figure 4.18

The standard numerical measure of parser performance is something
called labeled precision/recall f-measure. It is a number between zero and 1,
with 1 being perfect. We now unpack this name.

First we find the total number of correct phrasal constituents in all of
the test set. So in Figure 4.18 there are 13 phrasal labels (and fourteen
pretermals). We do not count ROOT, because it is impossible to get wrong,
so we have 12. A test-set of a thousand sentences might have a total of
twenty five thousand such nodes. We then count how many the parser got
correct. If it produced exactly the above tree, it would be twelve, but in
fact, it produces the tree in Figure 4.19 How many nodes are correct there?

To assign a number, we first need to define what makes a constituent in
one tree the “same” as one in another tree with the same yield. Our formal
definition is that two trees are the same if and only if they have the same
label, starting point in the string, and ending point in the string. Note that
according to this definition we cound as correct the VP(2,13) found in Fig-
ures 4.18 and 4.19 even though they do not have the same sub-constituents.
The idea is that in such a case the sub-constituents will be marked wrong,
but we do now allow the mistakes at that level to count against the VP one
level up. The required label identity of the two constituents is what makes
this “labeled precision/recall f-measure” So here there are four correct con-
stituents in Figure 4.19 out of eight total.

So let C be the total constituents correct, G be the number in the tree-
bank tree, and H the number in the parser tree. We define precision (P ) as
C/H and recall (R) is C/G. F-measure(F ) is the harmonic mean of the two
(2·P ·R)/(P + R). Note that if P = R then P = R = F , or equalently F is
the average of P and R. But as P and R diverge, F tends to the smaller
of the two. So suppose our parser produces a tree with only one phrasal
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category, and it is correct, then P = 1, R = 1/13, and F ≈ 0.16

When you build the just-described parser and test it we get C = 18151,G =
27007, and H = 25213, so F = .695 This means that almost one out of three
constituents are incorrect. The example of Figure 4.19 was deliberatly picked
to show you how bad things can get. The parser decided to use “work” as a
noun, and “live” as an adjective, and these make for unusual combinations,
such as one saying, in effect, that the participants are working “nearby or
live” presumably as opposed to far-away or dead.

Fortunately, this is a very simple model, and statistical parsing has
moved way beyond this. A modern parser gets about .90 F, and in par-
ticular gets the above example completely correct.

4.6 Estimating better grammars from treebanks

Context-free grammars are called “context-free” because the choice of rule
expanding each non-terminal is independent of everything already generated
in the tree except for the label on the parent being expanded. You can think
of this label as classifying the rest of the tree into one of |N | states. Or to
put it another way, a context-free symbol is an information barrior between
what is going on outside the constituent and its inside. Because a CFG
only constrains the labels on nodes in local trees, if we want to capture a
a longer-range dependency between nonlocal parts of the tree, it must be
broken down into a sequence of local dependencies between between the
labels on nodes in the same local trees. The nonterminal labels then serve
as “communication channels” responsible for propagating the dependency
through the appropriate sequence of local trees. This process would start
with a single state such as NP, and end up with several variants, NP1, NP2,
etc. Thus the process is called state-splitting.

The classic example of state-splitting is parent annotation. where the
parent category of each nonterminal is encoded in its label. So, if the string is
a complete sentence the parse starts out with (ROOT (S ...)) But treebank
S nodes under ROOT (almost) always end in a final punctuation mark,
and thus these S’s are quite different from, e.g., subordinate clases. (A
subordinate clause is a sentence-like structure that We can better model
this is we have the symbol “SˆROOT” — an S underneath ROOT. In fact
there are a lot of situations where parent annotation allows us to capture
important regularities. For example, subject noun phrases, e.g., NPŜ, are
more likely to be pronouns than object NPs (NPˆVP). Figure 4.20 also
shows the result of parent-annotating the S and NP nonterminals.
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S^TOP

NP^S

VBZ/put

TOP

NNP

VP

NP^VP

NNP IN/in

PP

NP^PP

DT/the NN

Sam put

Fido in

the kennel

Figure 4.20: The tree produced by a state-splitting tree-transformation
of the one depicted in Figure 4.11 on page 113. All verb, preposition and
determiner preterminals are lexicalized, and S and NP nonterminals are
parent-annotated. A new start symbol TOP has been introduced because
not all trees in the treebank have a root labeled S.

Another important way to use state splitting is suggested by the fact that
many words prefer to appear in phrases expanded with particular rules. For
example, ‘put’ prefers to appear under a VP that also contains an NP and
PP (as in the example in Figure 4.11 on page 113), while ‘sleep’ prefers
to appear without any following NP (i.e., ‘Sam slept’ is a much better sen-
tence than ‘Sam slept Fido in the kennel’, but ‘Sam put Fido in the kennel’
is much better than ‘Sam put’). However, in PCFGs extracted from the
Penn Treebank and similar treebanks, there is a preterminal intervening
between the word and the phrase (VBZ), so the grammar cannot capture
this dependency. However, we can modify the grammar so that it does
by splitting the preterminals so that they encode the terminal word. This
is sometimes called “lexicalization”. (In order to avoid sparse data prob-
lems in estimation you might choose to do this only for a small number of
high-frequency words). For grammars estimated from a treebank training
corpus, one way to do this is to transform the trees from which the grammar
is estimated. Figure 4.20 shows this as well.

A second way to handle sparse data problems cause by state splitting is
to smooth, as we did in Chapter 1. So we might estimate the probability of a
parent anotated constituent by blending it with the unannoted version. So if
R1 = V P V P → V BDNP V P we could smooth it with R2 = V P → V BDNP

DRAFT of 6 March, 2016, page 129



130 CHAPTER 4. PARSING AND PCFGS

as follows:

P̃R1 =
nR1(d) + β P̃R2

nV BV B (d) + β

4.7 Programming A Parser

Section 4.3 layed out the basics of probabilistic CFG parsing. When we left
it, it looked something like this: The basic data structure is the grammar,
a set of rules where a rule r is the fourtuple < lhs, rhs1, rhs2, prob >. The
chart is an N by N array of Cells. A Cell is a set of Constituents, and a
constituent is a four tuple < label, ρ1, ρ2, µ >. A constituent coresponding
to a terminal symbol would have µ = 1 and ρ1 = ρx = NULL. (No back
pointers).

The parsing algorithm thus is this:
Function: parse(w0,L)

1. read in binarized tree-bank grammar.

2. for ℓ = 1 to L

(a) for s = 0 to (L− ℓ)

i. fill C(s, s+ ℓ)

3. if Root(0, N) ∈ C(0, N)

(a) return debinarized(ρRoot(0,n))

(b) else return NULL

Function: fill(C(i, k))

1. if k = (i+ 1)

(a) add constituent c =< word,NULL,NULL, 1 > to C

2. for j = (i+ 1) to (k − 1)

(a) for c1 ∈ C(i, j) and c2 ∈ C(j, k) and rule r =< l, labc1 , labc2 , p >

i. create constituent c =< lhs, c1, c2, µc = (pr·µc1 ·µc2) >

ii. If there is no c′ ∈cell with labc′ = lhsr and µc′ ≥ µc

iii. add c to C(i, k).

3. While adding new or higher µ constituents to C(i, k)
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(a) for c ∈ C and r =< lhs, labc, NULL, p >

i. create constituent n =< lhsr, c,NULL, µn = (µc·pr) >

ii. if there is no c′ ∈ C labn = labc′ and µc′ >= µn

A. add n to cell.

In words, we fill up the chart always working on smaller spans before
larger ones. For each cell with a span of one we first add the word from
the string. Then for larger spans we use the binarized grammar to create
new constituents from pairs of smaller constituents. And for any size cell,
we add constituents from unary rules repeatedly untill there are no more to
add.

So far in this book we have refrained from delving below the typical
level for psuedo-code. But here there is one issue that can drastically affect
performance, and will be far from obvious to the reader. It has to do with
the triple loop inside FILL, to the effect “for all rules, left constituents and
right constituents” when you think about this you realize that these three
loops can be in any order. That is, we could first find a left-constituent,
then find rules that match this left constituent, and finally look for the
rule’s right constituent in the chart. If we find it we apply to rule to create
a new constituent of the type specified by the left-hand side of the rule.
But we could do this in the reverse order, first right, then rule, then left –
or first left, then right, then rule. And it turns out that this can make a
big difference in the speed of your program. In particular, do not use the
ordering left, right, rule.

To see this, we first note that for a normal Chomsky normal form imple-
mentation, the average cell has about 750 constituents. This means if the
two loops over constituents go on the outside, the loop in which we consider
rules is executed 750·750, e.g., about a half million, times. This will slow
you down.

Now at first 750 may seem excessive. The Penn-Treebank only has about
thirty phrasal constituents. Where did the other 750 come from? The
answer, of course, is that they are all symbols created by binarization, e.g.,
DT JJ NN . In fact, there are about fourty binarized constituents in a call
for every “regular” one.

But there is some good news here. As we noted at the end of Section
4.3, the right-most symbol in a binary rule can never be a binarization
non-terminal. That means there are not 750 * 750 possible combinations,
to build, but only say, 750*30, where 30 is the number of original phrasal
non-terminals.
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If we use an ordering with rule selection in the middle we automatically
get this efficiency. Suppose we start by iterating over possible left-hand side
constituents. As we just noted, there will be on average about 750 of them.
We now take the first of these, say with the label DT NN . Next we look
for rules of the form X → DT NNY . Finally we look for Y’s. But we are
guaranteed there can be a maximum 30 of these, since no binary constituents
will every appear in this position within a rule. (This is becaused we used
left-branching binarization. The opposite would be true if we had used
right-branching.)

That is it. It is no harder doing rule selection in the middle, than doing
it last, and it is much faster.

4.8 Exercises

Exercise 4.1: Suppose we added the following rules to the grammar of
Figure 4.5:

NP → NP CC NP VBZ → like CC → and

Show the parse tree for the sentence “Sandy and Sam like the book”.

Exercise 4.2: Show a dependency tree for the sentence in the previous
exercise using Figure 4.3 as a template. Assume that the head of a conjoined
‘NP’ is the ‘CC’, and its dependents are the noun-phrase conjuncts (the
subordinate noun-phrases). Do not worry about the labels on arcs.

Exercise 4.3: Fill in the chart of Figure 4.14 with (a) two constituents
which are missing, and (b) the µ values for all constituents according to the
probabilities of Figure 4.7. Note: there might be more constituents than
cells.

Exercise 4.4: Consider the probability of a string of N words P (w0,N )
according to a PCFG. Is this equal to αROOT (0, N), βROOT (0, N), both, or
neither?

Exercise 4.5: Suppose the third word of a string of length N > 3 is “apple”
where ρX→apple is 0.001 when X is NOUN, but zero for any other part of
speech. Which of the following is correct? αNOUN (2, 3) is equal to P (w0,N ),
it is 1000P (w0,N ), it is .001, it is 1.0? What about βNOUN (2, 3)?
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4.9 Programming Assignment

Write a parser and evaluate its accuracy. You’ll use the following files:

1. wsj2-21.blt, which contains binarized rules and their counts ex-
tracted from sections 2–21 of the Penn WSJ treebank. All words
that appear less than 5 times have been replaced with *UNK*. A new
root node labeled TOP has been inserted. Also, preterminal symbols
that consist entirely of punctuation characters have had a caret ‘ˆ’
appended to them, to distinguish them from the identical terminal
symbols. You’ll need to remove this from the parse trees you finally
produce (munge-trees can do this if you want).

2. wsj24.tree, which contains the Penn WSJ treebank trees for sec-
tion 24. Terminals not appearing in wsj2-21.blt have been replaced
with *UNK*. You should use this with the EVALB scoring program to
evaluate your results.

3. wsj24.txt, which contains the terminal strings of wsj24.tree.

4. The EVALB parser scoring program and instructions.

You are to parse all sentences of length≤ 25. When you encounter a sentence
of length greater than that your program should print out “*IGNORE*” to
the output file. Note that the EVALB program returns various types of
results. One is just the POS tag accuracy of the parser. This should be in
the mid %90 range, much like an HMM tagger. The result we car about
the the labeled precision recall F-measure. This will be much lower —
about %70. If the output of the parser is called ”output of parser.txt”, you
would munge-trees by doing ”cat output of parser.txt — ./munge-trees -rw
¿ output file.txt”. Then to score your output, you would run ”./score parse
wsj24.gold output file.txt”.

4.10 Further Reading

Speed is a concern in syntactic parsing. Chart parsing is n3, but it is also
linear in the size of the grammar. This is important because state split-
ting can lead to very large grammar size. Chart parsing can be mae faster
with course to fine parsingparsing!course to fine and best-first parsing. Even
faster speeds can be obtained in other frameworks, such as indxshift-reduce
parsingparsing!shift-reduce, and more generally in work on .
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While parsers trained with the Penn treebank work well on newspaper
text, they work much less well when used on text from other domains, such
as medicine. Improving performance accross domains is known as , and
some techniques used in this endever are self training and bootstrapping.

As we mentioned, the reason we want to parse is that parse trees serve
as a guide to combining the meansing of the parts into the meaning of the
whole. One way to operationalize this is to pair grammar rules with semantic
rules that operate on the pieces the syntax rules find. Probably the most
well worked out version of this in computational linguistics is generalized
phrase-structure grammar . Unification-based garmmar is a general term for
grammars that use the unifcation algorithm to aid in connecting syntax and
semantics.
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