CSC 1510

- Limitations of Perfect Security
- Definition of Computational Security: Concrete vs. Asymptotic
- Definition of Semantic Security

Last Lecture
Perfectly secure symmetric-key encryption

- Definitions 1,2,3

$$
\begin{aligned}
& \forall m_{0}, m_{1} \in M_{1}, \forall c \in C \\
& \operatorname{Pr}\left[E n c_{k}\left(m_{0}\right)=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{k}\left(m_{1}\right)=c\right]
\end{aligned}
$$

- Construction: OTP
- Limitations: $|M| \leqslant|k|$

How to relax the security definition?

Limitations of Perfect Security
The If $\pi=\left(G_{e n}, E n c, D e c\right)$ is a perfectly secure encryption scheme with message space M \& key space K, then $|M| \leq|k|$.

Proof: Assume $|K|<|M|$.
Pick an arbitrary $c \in C$ where $\operatorname{Pr}[c=c]>0$.
$M(c):=\{m \mid m=\operatorname{Dec}(c)$ for some $k \in K\}$.
$|M(c)| \leq|K|<|M|$.
$\exists m^{\prime} \in M$ st. $m^{\prime} \notin M(c)$.

$$
\operatorname{Pr}\left[M=m^{\prime} \mid C=c\right]=0 \neq \operatorname{Pr}\left[M=m^{\prime}\right] .
$$

possible for some distribution over M

Computational Security
Perfect Security:
(1) Absolutely no information is leaked
(2) A has unlimited computational power

Relaxation (Practical Purpose):
(1) "Tiny" information can be leaked
(2) A has limited computational power

How to formalize?

Computational Security

- Concrete Approach: (quantum computers?) classical computers
A scheme is (t, ε)-secure if $\forall A$ running in time $\leq t$ succeeds in breaking the scheme with probability $\leq \varepsilon$.

Example: $\left(2^{128}, 2^{-60}\right)$-secure encryption scheme
What's the problem?
(1) Moore's Law?
(2) Specific about A's computing power $\left(5\right.$ years, $\left.2^{-40}\right) \rightarrow 2$ years?

10 years?

Computational Security

- Asymptotic Approach:

入, measuring how "hard" it is for A
Introduce a security parameter n (public) to break the scheme.

All honest parties run in time poly (n). exp (n)
Security can be tuned by changing n.

$$
\text { poly (n) "negligible" in } n
$$

A scheme is (t, ε)-secure if $\forall A$ running in time poly (n) succeeds in breaking the scheme with probability neg (n).

Polynomial \& Negligible "Efficient": probabilistic polynomial time (PPT)
Def A function $f: N \rightarrow \mathbb{R}^{+}$is polynomial if

$$
\exists c \in \mathbb{N} \text { st. } f(n) \in O\left(n^{c}\right)
$$

Example: $f(n)=3 n^{6}+5 n^{2}-7 \in O\left(n^{6}\right)$
Def A function $f: N \rightarrow \mathbb{R}^{+}$is negligible if
\forall polynomial $p, \exists N \in N$ sit. $\forall n>N, f(n)<\frac{1}{p(n)}$.

$$
\Leftrightarrow \forall c \in N, \quad f(n) \in o^{\epsilon^{s}\left(n^{-c}\right)}
$$

Examples: $2^{-n}, 2^{-\sqrt{n}}, n^{-\log n}, 2^{n^{c}}$

Exercise: Is this a negligible function?

$$
f(n):= \begin{cases}2^{-n} & \text { if } n \text { is even } \\ 1 / n^{2} & \text { if } n \text { is odd }\end{cases}
$$

Negligible Function
Def A function $f: N \rightarrow \mathbb{R}^{+}$is negligible if
$\forall p o l y n o m i a l ~ p, ~ \exists N \in \mathbb{N}$ sit. $\forall n>N, f(n)<\frac{1}{p(n)}$
Claim 1 If f, g are negligible functions, then $f+g$ is also negligible.
proof: \forall polynomial $p, \quad \exists N_{1} \in N$ sit. $\forall n>N_{1}, f(n)<\frac{1}{2 p(n)}$

$$
\begin{aligned}
& \exists N_{2} \in N \text { s.t. } \forall n>N_{2}, \quad g(n)<\frac{1}{2 p(n)} \\
& N:=\max \left(N_{1}, N_{2}\right) . \quad \forall n>N, \quad f(n)+g(n)<\frac{1}{p(n)}
\end{aligned}
$$

Claim 2 If f is negligible, p is polynomial, then $f \cdot p$ is also negligible. proof: $\forall p o l y n o m i a l ~ q, \quad \exists N \in N$ sit. $\forall n>N, \quad f(n)<\frac{1}{p(n) \cdot q(n)}$

$$
\Rightarrow f(n) \cdot p(n)<\frac{1}{q(n)}
$$

Corollary If g is non-negligible, p is polynomial, then $\frac{g}{p}$ is also non-negligible.

Concrete \rightarrow Asymptotic
A scheme is (t, ε)-secure if $\forall A$ running in time $\leq t$ succeeds in breaking the scheme with probability $\leqslant \varepsilon$.
security parameter $n \downarrow$
A scheme is secure if \forall PPT A succeeds in breaking the scheme with probability \leqslant negligible.
neg (n)

Computationally Secure Encryption

- Syntax:

A symmetric-key encryption scheme is defined by PPT algorithms (Gen, Enc, Dec):

$$
\begin{array}{ll}
k \leftarrow \operatorname{Gen}\left(1^{n}\right) & n \\
c \leftarrow \operatorname{Enc}(m) \quad m \in\{0,1\}^{*} \\
m / 1:=\operatorname{Dec}(k)
\end{array}
$$

- Correctness. $\forall n, \forall k$ output by $\operatorname{Gen}\left(1^{n}\right), \forall m \in\{0,1\}^{*}$

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=m
$$

Computationally Secure Encryption
Def 1 A symmetric-key encryption scheme (Gen. Enc, Dec)
is semantically secure if $\forall P P T A, \exists$ negligible function $\varepsilon(\cdot)$ s.t. computationally $\operatorname{Pr}\left[b=b^{\prime}\right] \leqslant \frac{1}{2}+\varepsilon(n)$
indistinguishable

$$
\begin{aligned}
& C\left(1^{n}\right) \\
& A\left(1^{n}\right) \\
& \frac{m_{0}, m_{1} \in\{0,1\}^{*}}{\left|m_{0}\right|=\left|m_{1}\right|} \\
& k \leftarrow \operatorname{Gen}\left(1^{n}\right) \\
& b \notin\{0,1\} \\
& c \leftarrow E n_{k}\left(m_{b}\right) \\
& \xrightarrow{C} \\
& \text { output b' }
\end{aligned}
$$

Computationally Secure Encryption
Def 2 A symmetric-key encryption scheme (Gen, Enc, Dec)
is semantically secure if $\forall P P T A$, \exists negligible function $\varepsilon(\cdot)$ s.t. $\begin{gathered}\text { computationally } \\ \text { indistinguishable }\end{gathered}\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right| \leqslant \varepsilon(n)$

$$
\begin{aligned}
& C\left(1^{n}, b\right) \\
& k \leftarrow \operatorname{Gen}^{n}\left(1^{n}\right) \\
& c \leftarrow \operatorname{En}_{k}\left(m_{b}\right) \xrightarrow{\substack{m_{0}, m_{1} \in\{0,1\}^{*} \\
\left|m_{0}\right|=\left|m_{1}\right|}} A\left(1^{n}\right) \\
& \\
& \text { output } b^{\prime}
\end{aligned}
$$

Computationally Secure Encryption
Def 1 A symmetric-key encryption scheme (Gen. Enc, Dec) \downarrow is semantically secure if \forall PT A :
$\operatorname{Def} 2\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right| \leqslant$ neg $\mid(n) \quad$ in Game 2.
$\operatorname{Def} 1 \Rightarrow \operatorname{Def}$ 2: If π is secure under Def 1, then it's also secure under Def 2 .
Assume π is not secure under Def 2 , then oPT A, non-negligible function $\varepsilon(\cdot)$ sit. $\left(\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|>\varepsilon(n)\right.$ in Game 2 . use A to break Def 1

