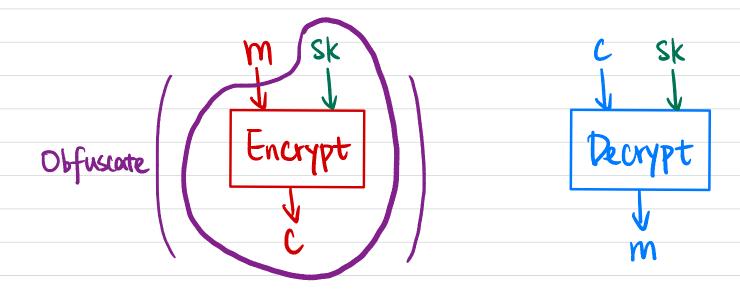

CSCI 1510

- · Program Obfuscation (continued)
- · Final Review


ANNOUNCEMENT: Course Feedback & Critical Review

Program Obfuscation

Goal: Make the program "unintelligible" without affecting its functionality

Symmetric-Key to Public-Key

Formal Definition: Virtual Black Box (VBB)

Obfuscator 0:
$$C \xrightarrow{O} O(C)$$

- · Functionality: O(C) computes the same function as C
- · Polynomial Slowdown: $O(C) \leq poly(n) \cdot |C|$
- · Security (Virtual Black Box):

$$C(\cdot)$$

$$x(\cdot)$$

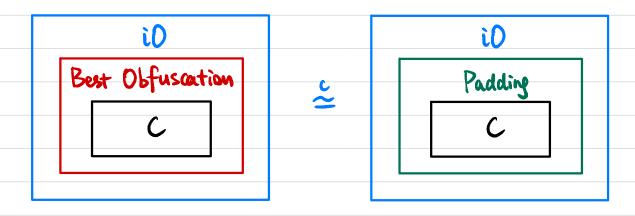
$$C(x)$$

$$O(C) \simeq Simulator$$

Thm VBB Obfuscator for all poly-sized circuits is impossible to achieve

$$C(X) := \begin{cases} b & \text{if } X=A \\ m & \text{if } X(A)=b \\ 0 & \text{otherwise} \end{cases}$$

$$Run O(C) O(C) \rightarrow m$$


Formal Definition: Indistinguishability Objuscation (i0)

Objuscator 0: C - O O(C)

- · Functionality: O(C) computes the same function as C
- · Polynomial Slowdown: O(C) & poly (n) · | C|
- Security (indistinguishability obfuscation):

 If Co & C1 compute the same function and $|Co| = |C_1|$,

 then $O(C_0) \stackrel{\sim}{\simeq} O(C_1)$
- · Best Possible Obfuscation

PKE from io

Let G: {0,1}" -> {0,1}2 be a length-doubling PRG.

- Gen (1ⁿ): Sk = \frac{4}{50,13}^n

 Pk: = G (Sk)
- Encpk (m): $Cpk, m (x) := \begin{cases} m & \text{if } G(x) = pk \\ L & \text{otherwise} \end{cases}$ Output $C \leftarrow \hat{U}C(Cpk, m)$ m or L
- · Decsk(c): C(sk) → m

Thm If G is a PRG and iO(·) is an idistinguishability obfuscator, then this PKE scheme is CPA-secure.

PRG

Pk:= G(sk)

Cpk,m(x):= { m if G(x) = pk }

Underwise

Output
$$C \leftarrow iO(Cpk,m)$$

Stat. Close Cpk, m (x):=
$$\begin{cases} m & \text{if } G(x) = pk \\ L & \text{otherwise} \end{cases}$$

Output $C \leftarrow \hat{O}(Cpk, m)$

Output C < iO (Cpk,m)

Is it possible?

- · 2001: Notion introduced
- · 2013: Fist "Candidate" construction from multilinear maps
- · 2013-2020: Attack, fixes, new constructions from new assumptions
- · 2020: New construction from well-founded assumptions

- · Cryptographic Hardness Assumptions
 - Factoring / RSA Assumptions
 - DLOG/CDH/DDH Assumptions
 - LWE Assumption (Post-Quantum)
- · Key Exchange
 - Definition
 - Construction: Diffie-Hellman
- · Public-Key Encryption
 - Definition: CPA/CCA
 - Constructions: El Gamen / RSA / Reger

- · Theoretical Assumptions
 - One-Way Function / Permutation: Definition & Carolidates
 - Hard-Core Predicate: Definition & Construction
 - PRG/PRF from OWP
 - Trapdoor Permutation: Definition & Candidate (RSA)
 - PKE from TDP

- · Fully Homomorphie Encryption
 - Definition & Applications
 - Somewhat Homomorphic Encryption over Integers & from LWE (GSW)
 - Bootstrapping SWHE to FHE

- · Digital Signature
 - Definition
 - Hash-and-Sign Paradigm
 - Construction 1: RSA-FDH
 - Proof in the Random Oracle Model
 - Construction 2: Schnor
 - Identification Scheme: Definition & Construction from DLOG (Schnorr)
 - First-Shamir Transform

- · Zero-Knowledge Proof
 - Definition: Completeness / Soundness / Zero-Knowledge
 - Example: 2KP for Diffie-Hellman Tuples
 - Proof Technique: Rewinding
 - ZKP for All NP (Graph 3-Coloring)
 - Commitment Scheme
 - Non-Interactive ZK

- · Secure Multi-Party Computation
 - Definition: Semi-Honest/Malicious
 - Applications
 - Example: Private Set Intersection from DDH
 - MPC for Any Function (GMW)
 - Oblivious Transfer: Definition & Construction from CDH
- · Program Obfuscation
 - Definitions: VBB/iO
 - Example: PKE from io

THANK YOU 33