
Homework 9

Due: December 01, 2023

CS 1510: Intro. to Cryptography and Computer Security

1 SWHE and FHE Discussion

The following are reflection questions that you may answer informally, with your under-

standing and intuition rather than mathematical arguments and proofs.

a. What is one potential real-world use-case of somewhat or fully homomorphic en-

cryption? Precisely describe the participants and purpose in the SWHE or FHE

application: who owns the data and who is computing on the data? Why is this

setup useful?

b. When it comes to practical applications of computing privately over large datasets, it

is often desirable to aggregate data from multiple sources or data owners, each with

their own secret key. Consider the GSW scheme from class. Is it feasible to instantiate

this cryptosystem such that two different key holders can homomorphically compute

over their ciphertexts? Why or why not?

2 Random Oracles and RSA-FDH Discussion

The following are reflection questions that you may answer informally, with your under-

standing and intuition rather than mathematical arguments and proofs.

a. What is the fundamental modeling difference between a hash function and a random

oracle? Specifically, where in the security reduction would the hash function exist,

vs. where does the random oracle exist?

b. Why is it necessary to replace the hash function in RSA-FDH with a random oracle

in order for the security reduction to go through?

c. What security properties would we need from the hash function in RSA-FDH to avoid

the attacks discussed on Slide 16 in Lecture 19? How are these properties guaranteed

by the random oracle?

d. In practice, “oracles” do not exist—participants run cryptographic protocols inter-

nally. Random oracles, for example, are instantiated with hash functions. What does

this mean for the practical security of the cryptographic protocols like RSA-FDH,
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Schnorr’s identification scheme, and zero knowledge proofs, which are widely used in

practice?

3 Digital Signatures

Let S = (Gen,Sign,Vrfy) be a secure digital signature scheme for k-bit messages.

Consider the following three signature schemes created using S. Each will use the original

Gen algorithm, but provide modified algorithms Sign′ and Vrfy′ that sign and verify variable-

length messages that can be larger than k-bits.

1. Scheme 1: S1 = (Gen,Sign1,Vrfy1). For a given message,M , letM =m1∥m2∥ . . . ∥mn,

such that eachmi is of length k. Note that ifM is not a multiple of k, then we will pad

the end of M with extra 0s. Let Sign1(sk,M) = (Sign(sk,m1), Sign(sk,m2), . . . ,

Sign(sk,mn)). Thus, the output of S1 is a vector of signatures, σ = {σ1, σ2, ..., σn}.

Define Vrfy1 canonically:

Vrfy1(pk,M,σ) = (Vrfy(pk,m1, σ1), Vrfy(pk,m2, σ2), . . . , Vrfy(pk,mn, σn))
?
= 1n

This means checking each σ with the corresponding message and outputting 1 only

if all sub-verifications output 1.

2. Scheme 2: S2 = (Gen,Sign2,Vrfy2). For a given message, M , choose the smallest n

such that ⌈log2(n + 1)⌉ + ⌈
∣M ∣
n ⌉ ≤ k. (Assume that ∣M ∣ is small enough and k is large

enough to make this is possible.) Then break M up into M = m1∥ . . . ∥mn, where

each mi is such that ∣mi∣ = k − ⌈log2(n + 1)⌉, and mn is padded with 0s as necessary.

Let Sign2(sk,M) = (Sign(sk,1∥m1), Sign(sk,2∥m2), . . . , Sign(sk, n∥mn)), where each

index i is represented using ⌈log2(n + 1)⌉ bits. Again, define Vrfy2 canonically:

Vrfy2(pk,M,σ) = (Vrfy(pk,1∥m1, σ1), Vrfy(pk,2∥m2, σ2), . . . , Vrfy(pk, n∥mn, σn))
?
=

1n.

3. Scheme 3: For a given message, M , choose the smallest n such that 2⌈log2(n + 1)⌉+

⌈
∣M ∣
n ⌉ ≤ k. (Assume that ∣M ∣ is small enough and k is large enough to make this

is possible.) Then break M up into M = m1∥ . . . ∥mn, where each mi is such that

∣mi∣ = k − 2⌈log2(n + 1)⌉, and mn is padded with 0s as necessary.

Let S3(sk,M) = (Sign(sk, n∥1∥m1), Sign(sk, n∥2∥m2), . . . , Sign(sk, n∥n∥mn)), where

each index is represented using ⌈log2(n + 1)⌉ bits. Let Vrfy
3 be defined canonically:

Vrfy3(sk,M,σ) =

(Vrfy(sk,m1, n∥1∥m1), Vrfy(sk,m2, n∥2∥m2), . . . , Vrfy(sk,mn, n∥n∥mn))
?
= 1n
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a. Show that, by issuing just one query to the signer in Scheme 1, the adversary can

succeed in forging a signature on a message of its choosing; find an attack that breaks

Scheme 1 but not Scheme 2. This can be informal.

b. Show that Scheme 2 is still broken: by issuing just a single signing query to the

signer in Scheme 2, the adversary can succeed in forging a signature on a message

of its choosing; find an attack that breaks Scheme 2 but not Scheme 3. This too

can be informal.

c. Show that Scheme 3 is still broken: by issuing two signing queries to the signer in

Scheme 3, the adversary can still succeed in forging a signature on a message of

its choosing as long as this message is long enough (how long does it need to be?).

Again, this can be informal.

d. Give a scheme that is based on Scheme 3, but is in fact secure (You may NOT

use CRHFs as part of your construction; the only building block you’re given is the

signature scheme for k-bit messages. You may assume that k is sufficiently large—at

least in the order of the security parameter.) Explain why your scheme fixes the

vulnerability that is exhibited by Scheme 3, and prove it secure.

4 Signatures: From Weak to Strong

A signature scheme is weakly secure if the probability that a ppt adversary wins the

following game is negligible:

Signing query: On input 1k, the adversary chooses the messagesM1, . . . ,Mn to be signed.

Response: The signer runs the key generation and the signing algorithms and sends to the

adversary the public key pk and the signatures {σj}
n
j=1 on the adversary’s messages.

Forgery: The adversary outputs a message M∗ and a signature σ∗ and wins the game if

M∗ was not included in its signing query, and yet the verification algorithm accepts

the signature σ∗.

The key difference for a weakly secure scheme being that the adversary must submit their

messages all at once rather than adaptively asking for messages to be signed (i.e. they

submit messages to be signed one-by-one and can thus use responses from previous queries

to inform their next message query).

A signature scheme is one-time secure if the probability that a ppt adversary wins the

following game is negligible:

Key generation: The challenger runs the key generation algorithm and generates (pk, sk).
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Signing query: On input pk, the adversary chooses a message m to be signed.

Response: The challenger computes a signature σ on m using the signing algorithm, and

returns it to the adversary.

Forgery: The adversary outputs a message m∗ and a signature σ∗ and wins the game if

m∗ ≠m, and yet the verification algorithm accepts the signature σ∗.

Construct a secure signature scheme given a weakly secure signature scheme (Genweak,

Signweak,Vrfyweak) and a one-time secure signature scheme (Genone-time,Signone-time,

Vrfyone-time). Let the message space and key space for all the signature schemes here be

binary strings of length k, the security parameter, and let the weakly secure scheme sign

n = p(k) messages for any polynomial p. Don’t forget to prove that your construction is

correct and secure.

5 Deterministic Digital Signature

Assume the existence of a digital signature scheme Π = (Gen,Sign,Verify) for which Sign

is a probabilistic algorithm. Construct a digital signature scheme Π′ = (Gen′,Sign′,Verify′)

where Sign′ is deterministic.

Hint: You may also assume the existence of one-way functions (and other symmetric-

key primitives implied by one-way functions) as it is implied by the existence of digital

signatures.

6 Zero Knowledge Proofs

In class we have seen ZK protocols for proving membership in 3-colorability. Let us design

a proof for a different NP-complete problem.

Definition 1 (Vertex Cover) Given a graph G = (V,E), a vertex cover of size k is a

subset C ⊆ V such that ∣C ∣ = k and that for all edges e ∈ E at least one endpoint is in C.

Consider the language VertexCover defined as follows:

VertexCover = {(G,k) ∶ G has a vertex cover of size k}

Suppose the prover Alice and the verifier Bob share a graph G and the description of a

cryptographic commitment algorithm Com. Alice claims that G has a size k vertex cover.

Alice will attempt to prove it as follows.
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� We assume that each vertex of the original graph is labeled with a unique number

from 1 to n (such that n = ∣V ∣) known to both the prover Alice and the verifier Bob.

Alice permutes the set of vertices using a random permutation π ∶ [n]→ [n], where we

denote the permuted set V ′ = {π(1), . . . , π(n)}. Alice computes a list of commitments

to the permuted vertices CV ′ = {Com(π(1)),Com(π(2)), . . . ,Com(π(n))}.

� Define a new set of edges E′ such that for each original edge e = (u, v) ∈ E between

two vertices u and v, there exists an edge e′ = (π(u), π(v)) between the permuted

vertices π(u) and π(v). Alice computes commitments to all the edges in E′, namely

{Com(u′, v′) ∣ e′ = (u′, v′) ∈ E′}, and then randomly permutes these commitments to

obtain a set CE′ .

� Finally, for all v′ ∈ V ′, Alice proceeds as follows: If π−1(v′) ∈ C, then set bv′ ∶=

1; otherwise set bv′ ∶= 0. Alice computes a list of commitments to the permuted

indicators CB′ = {Com(b1),Com(b2), . . . ,Com(bn)}.

How does the rest of this protocol work? We’re going to divide the solution into several

small steps.

a. Suppose Bob only wanted to check that the graph is represented correctly (i.e. that

the graph is the same one, G, that he and Alice have agreed on.) How can he confirm

this without learning any other information?

b. Now suppose Bob only wants to check that the cover has the appropriate size (the

agreed upon k). How can he confirm this without learning any other information?

c. Finally, suppose Bob only wants to check that each edge is covered. How can Bob do

this without learning any other information (he is allowed to examine only one edge

in each round)? With what probability is he guaranteed to catch Alice if she does

not know a k-cover?

d. What should Bob’s overall strategy for verifying Alice’s vertex cover proof be, and

what is the minimum probability that Alice will be caught if she cheats? (Hint: the

strategy will probably have to be randomized.)

e. Assuming Alice is willing to repeat this process as many times as necessary, how

many times should Bob run this algorithm so that if Alice cheats she will be caught

with probability at least Ω(1)?

f. Give an informal sketch for how the zero-knowledge simulator for this proof system

might work.
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7 Summary Question

Summarize the most important insights from this week’s material, including from the

lectures, notes, textbooks, homework problems, and other resources you find helpful, into

a one-page resource. You will be permitted to use this one-page resource (along with the

other weeks’ resources) on the midterm and final.

Changes to this document prior to the exams are permitted, but for each change, you will

be asked to state what you changed and why. For example, if you dropped something and

replaced it with something else, justify why the thing you dropped wasn’t as important as

the thing you inserted, why you think it might be more useful for the exam, etc.

Please note that the purpose of this question is to help you organize and synthesize the

material for your own future use. It will be graded based on completion—we will not be

checking it for correctness.
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