Homework 0

Due: N / A

Problem 1

Proceed by induction on the number of steps k. When $k=1$, then our only item is stored in memory, so the sample is uniformly distributed. Assume our algorithm gives a uniform distribution for the first k steps for an arbitrary k. On the $k+1$ st step, we have two cases.

In the first case, by definition of our algorithm, the new item is stored with probability $\frac{1}{k+1}$.
In the second case, the old item is maintained with probability $\frac{k}{k+1}$. By independence of memory storage and our inductive hypothesis, the probability that one of the first k items is stored in memory is equal to

$$
\frac{1}{k} * \frac{k}{k+1}=\frac{1}{k+1}
$$

Therefore, our sample is uniformly distributed over all $k+1$ items. By induction, our sample is uniformly distributed at all steps.

Problem 2

a. After we see the s th picture, we must increment count to $4 s$ for the algorithm to terminate. By independence of each reload, the probability that we do not see a new picture in $4 s$ steps is $\left(1-\frac{n-s}{n}\right)^{4 s}$. Using the inequality

$$
1-x \leq e^{-x} \quad \text { (Exercise: prove!) }
$$

we get that

$$
\left(1-\frac{n-s}{n}\right)^{4 s} \leq\left(e^{-\frac{n-s}{n}}\right)^{4 s}=e^{\frac{-4 s(n-s)}{n}} .
$$

b. Let E_{s} be the event: "the algorithm terminate after observing exactly s pictures".
In part (a) we proved that for any $s<n$,

$$
P\left(E_{s} \mid \cap_{i<s} \bar{E}_{i}\right) \leq e^{\frac{-4 s(n-s)}{n}} .
$$

We now observe that

$$
P\left(E_{s}\right)=P\left(E_{s} \cap\left(\cap_{i<s} \bar{E}_{i}\right)\right)=P\left(E_{s} \mid \cap_{i<s} \bar{E}_{i}\right) \cdot P\left(\cap_{i<s} \bar{E}_{i}\right) \leq P\left(E_{s} \mid \cap_{i<s} \bar{E}_{i}\right),
$$

and the probability that the algorithm terminates before observing n is, by addivity of disjoint events,

$$
\begin{aligned}
\sum_{s=1}^{n-1} P\left(E_{s}\right) \leq \sum_{s=1}^{n-1} e^{-4 s(n-s) / n} & =\sum_{s=1}^{n / 2} e^{-4 s(n-s) / n}+\sum_{s=n / 2+1}^{n-1} e^{-4 s(n-s) / n} \\
& \leq 2 \sum_{s=1}^{n / 2} e^{-2 s}<\frac{2 e^{-2}}{1-e^{-2}}<1 / 2
\end{aligned}
$$

