Due: February 29th, 2023
Remember to show your work for each problem to receive full credit.

Problem 1 [50 points]

Consider the following algorithm for finding the k-smallest element in a set S :
Procedure $\operatorname{Select}(S, k)$;
Input: A set S, an integer $k \leq|S|=n$.
Output: The k smallest element in the set S.

1. If $|S| \leq 24$ sort S and return the k smallest element. STOP.
2. Choose a random element y uniformly from S.
3. Compare all elements of S to y. Let $S_{1}=\{x \in S \mid x \leq y\}$ and $S_{2}=\{x \in S \mid x>y\}$.
4. If $k \leq\left|S_{1}\right|$ return $\operatorname{Select}\left(S_{1}, k\right)$ else return $\operatorname{Select}\left(S_{2}, k-\left|S_{1}\right|\right)$.

Answer the following questions for $|S|=n$ (you can ignore the cost of step 1 which is $O(1)$):

1. We say that a call to $\operatorname{Order}(S, k)$ was successful if both $\left|S_{1}\right| \leq 2 n / 3$ and $\left|S_{2}\right| \leq 2 n / 3$. Prove that the algorithm terminates after no more than $\log _{3 / 2} n$ successful calls.
2. Prove that a call to the algorithm if $|S|=n \geq 24$ is successful with probability $\geq 1 / 4$. [Hint: $2 n / 3$ may not be an integer. S is a set.]
3. Let Y_{i} be a geometric random variable with parameter $p=1 / 4$. Argue (formally or informally) that for the analysis of the algorithm's runtime we can use Y_{i} as an upper bound on the number of calls between the i-th successful call (excluded) and the $i+1$-th successful call (included).
We continue the analysis assuming that for all i, the number of calls between the i th successful call (excluded) and the $i+1$-th successful call (included) is distributed according to Y_{i}.
4. Let X_{i} be the number of comparisons between the i-th successful call (excluded) and the $i+1$-th (inluded). Argue that for the analysis of the algorithm's performance, X_{i} is bounded by $n(2 / 3)^{i} Y_{i}$.
We continue the analysis assuming that $X_{i}=n(2 / 3)^{i} Y_{i}$. Under this assumption, prove that $E\left[X_{i}\right]=n(2 / 3)^{i} E\left[Y_{i}\right]=4 n(2 / 3)^{i}$.
5. Let X be the total number of comparisions executed by the algorithm. Prove that $E[X]$ is bounded by $12 n$.

Partner 1
Partner 2
Homework 1
CSCI 1550 / 2540
Partner 3
Homework 1 February 8th, 2023
6. Derive $\operatorname{Var}\left[Y_{i}\right]$ and $\operatorname{Var}\left[X_{i}\right]$.
7. Prove that $\operatorname{Var}[X] \leq \sum_{i=0}^{\log _{3 / 2} n} n^{2}(2 / 3)^{2 i} \operatorname{Var}\left[Y_{i}\right] \leq 21.6 n^{2}$
8. Apply Chebyshev's inequality to prove that with probability ≥ 0.85 the algorithm executes no more than $24 n$ comparisons.

Partner 1
Partner 2
CSCI 1550 / 2540
Partner 3
Homework 1
February 8th, 2023

Problem 2 [20 points]

Let $a_{1}, a_{2}, \ldots, a_{n}$ be a list of n distinct numbers. We say that a_{i} and a_{j} are inverted if $i<j$ but $a_{i}>a_{j}$. The Bubblesort sorting algorithm swaps pairwise adjacent inverted numbers in the list until there are no more inversions, so the list is in sorted order. Suppose that the input to Bubblesort is a random permutation, equally likely to be any of the n ! permutations of n distinct numbers.
a. Determine the expected number of inversions that need to be corrected by Bubblesort.
b. Determine the variance of the number of inversions that need to be corrected by Bubblesort.

Partner 1
Partner 2
Homework 1
CSCI 1550 / 2540
Partner 3

Problem 3 [15 points]

Suppose that we have an algorithm that takes as input a string of n bits. We are told that if the input bits are chosen independently and uniformly at random, the expected running time is $O\left(n^{2}\right)$. What can Markov's inequality tell us about the worst-case running time of this algorithm on inputs of size n ? [Hint: What is the sample space? What is the smallest probability of any event in that sample space?]

Partner 1
Partner 2
Homework 1
CSCI 1550 / 2540
Partner 3
February 8th, 2023

Problem 4 [15 points]

We have a standard six-sided die. Let X be the number of times that a 6 occurs over n throws of the die. Let p be the probability of the event $X \geq n / 4$. Compare the best upper bounds on p that you can obtain using Markov's inequality, Chebyshev's inequality, and Chernoff bounds.

Partner 1
Partner 2

Problem 5 [25 points]

Suppose that we can obtain independent samples X_{1}, X_{2}, \ldots of a random variable X and that we want to use these samples to estimate $\mathbb{E}[X]$. Using t samples, we use $\frac{1}{t} \sum_{i=1}^{t} X_{i}$ for our estimate of $\mathbb{E}[X]$. We want the estimate to be within $\varepsilon \mathbb{E}[X]$ from the true value of $\mathbb{E}[X]$ with probability at least $1-\delta$. We may not be able to use Chernoff's bound directly to bound how good is our estimate is if X is not a $0-1$ random variable, and we do not know its moment generating function. We develop an alternative approach that requires only having a bound on the variance of X. Let $r=\frac{\sqrt{\operatorname{Var}(X)}}{\mathbb{E}[X]}$.
a. Show using Chebyshev's inequality that $O\left(\frac{r^{2}}{\varepsilon^{2} \delta}\right)$ samples are sufficient to solve the problem.
b. Suppose that we only need a weak estimate that is within $\varepsilon \mathbb{E}[X]$ of $\mathbb{E}[X]$ with probability at least $\frac{3}{4}$. Show that $O\left(\frac{r^{2}}{\varepsilon^{2}}\right)$ are enough for this weak estimate.
c. Show that by taking the median of $O\left(\log \left(\frac{1}{\delta}\right)\right)$ weak estimates, we can obtain an estimate within $\varepsilon \mathbb{E}[X]$ of $\mathbb{E}[X]$ with probability at least $1-\delta$. Conclude that we need only $O\left(\frac{r^{2} \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ samples.

Hint: Let Y_{i} be the $i^{\text {th }}$ weak estimate and let Y be the median of all the weak estimates. Show that $|Y-\mathbb{E}[X]| \geq \varepsilon \mathbb{E}[X]$ implies that at least half of the Y_{i}^{\prime} 's satisfy $\left|Y_{i}-\mathbb{E}[X]\right| \geq$ $\epsilon \mathbb{E}[X])$.

