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Due: February 29th, 2023
Remember to show your work for each problem to receive full credit.

Problem 1 [50 points]

Consider the following algorithm for finding the k-smallest element in a set S:

Procedure Select(S, k);

Input: A set S, an integer k ≤ |S| = n.

Output: The k smallest element in the set S.

1. If |S| ≤ 24 sort S and return the k smallest element. STOP.

2. Choose a random element y uniformly from S.

3. Compare all elements of S to y. Let S1 = {x ∈ S | x ≤ y} and S2 = {x ∈ S | x > y}.

4. If k ≤ |S1| return Select(S1, k) else return Select(S2, k − |S1|).

Answer the following questions for |S| = n (you can ignore the cost of step 1 which is O(1)):

1. We say that a call to Order(S, k) was successful if both |S1| ≤ 2n/3 and |S2| ≤ 2n/3.
Prove that the algorithm terminates after no more than log3/2 n successful calls.

2. Prove that a call to the algorithm if |S| = n ≥ 24 is successful with probability ≥ 1/4.
[Hint: 2n/3 may not be an integer. S is a set.]

3. Let Yi be a geometric random variable with parameter p = 1/4. Argue (formally or
informally) that for the analysis of the algorithm’s runtime we can use Yi as an upper
bound on the number of calls between the i-th successful call (excluded) and the i+1-th
successful call (included).

We continue the analysis assuming that for all i, the number of calls between the i-
th successful call (excluded) and the i + 1-th successful call (included) is distributed
according to Yi.

4. Let Xi be the number of comparisons between the i-th successful call (excluded) and
the i + 1-th (inluded). Argue that for the analysis of the algorithm’s performance, Xi

is bounded by n(2/3)iYi.

We continue the analysis assuming that Xi = n(2/3)iYi. Under this assumption, prove
that E[Xi] = n(2/3)iE[Yi] = 4n(2/3)i.

5. Let X be the total number of comparisions executed by the algorithm. Prove that
E[X] is bounded by 12n.
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6. Derive V ar[Yi] and V ar[Xi].

7. Prove that V ar[X] ≤
∑log3/2 n

i=0 n2(2/3)2iV ar[Yi] ≤ 21.6n2

8. Apply Chebyshev’s inequality to prove that with probability ≥ 0.85 the algorithm
executes no more than 24n comparisons.
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Problem 2 [20 points]

Let a1, a2, ..., an be a list of n distinct numbers. We say that ai and aj are inverted if i < j
but ai > aj. The Bubblesort sorting algorithm swaps pairwise adjacent inverted numbers in
the list until there are no more inversions, so the list is in sorted order. Suppose that the
input to Bubblesort is a random permutation, equally likely to be any of the n! permutations
of n distinct numbers.

a. Determine the expected number of inversions that need to be corrected by Bubblesort.

b. Determine the variance of the number of inversions that need to be corrected by Bubblesort.
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Problem 3 [15 points]

Suppose that we have an algorithm that takes as input a string of n bits. We are told that
if the input bits are chosen independently and uniformly at random, the expected running
time is O(n2) . What can Markov’s inequality tell us about the worst-case running time of
this algorithm on inputs of size n? [Hint: What is the sample space? What is the smallest
probability of any event in that sample space?]

4



Partner 1
Partner 2
Partner 3 Homework 1

CSCI 1550 / 2540
February 8th, 2023

Problem 4 [15 points]

We have a standard six-sided die. Let X be the number of times that a 6 occurs over n throws
of the die. Let p be the probability of the event X ≥ n/4. Compare the best upper bounds
on p that you can obtain using Markov’s inequality, Chebyshev’s inequality, and Chernoff
bounds.
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Problem 5 [25 points]

Suppose that we can obtain independent samples X1, X2, ... of a random variable X and that
we want to use these samples to estimate E[X]. Using t samples, we use 1

t

∑t
i=1Xi for our

estimate of E[X]. We want the estimate to be within εE[X] from the true value of E[X] with
probability at least 1−δ. We may not be able to use Chernoff’s bound directly to bound how
good is our estimate is if X is not a 0-1 random variable, and we do not know its moment
generating function. We develop an alternative approach that requires only having a bound

on the variance of X. Let r =

√
V ar(X)

E[X]
.

a. Show using Chebyshev’s inequality that O( r2

ε2δ
) samples are sufficient to solve the problem.

b. Suppose that we only need a weak estimate that is within εE[X] of E[X] with probability
at least 3

4
. Show that O( r

2

ε2
) are enough for this weak estimate.

c. Show that by taking the median of O(log(1
δ
)) weak estimates, we can obtain an esti-

mate within εE[X] of E[X] with probability at least 1 − δ. Conclude that we need only

O(
r2 log( 1

δ
)

ε2
) samples.

Hint: Let Yi be the i
th weak estimate and let Y be the median of all the weak estimates.

Show that |Y − E[X]| ≥ εE[X] implies that at least half of the Yi’s satisfy |Yi − E[X]| ≥
ϵE[X]).
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