Partner 1
Partner 2
CSCI 1550 / 2540
Partner 3
Due: May 3rd, 2024 at 2:20pm
Remember to show your work for each problem to receive full credit.

Problem 1

Let $S=(X, \mathcal{R})$ and $S^{\prime}=\left(X, \mathcal{R}^{\prime}\right)$ be two range spaces. Prove that if $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ then the VC dimension of S^{\prime} is no larger than the VC dimension of S.

Partner 1
Partner 2

Homework 4

CSCI 1550 / 2540
Partner 3

Problem 2

Consider a random graph $G_{n, p}$ with n vertices and each pair of vertices independently connected by an edge with probability p. We prove a threshold for the existence of triangles in the graph.
Let $t_{1}, \ldots, t_{\binom{n}{3}}$ be an enumeration of all triplets of three vertices in the graph. Let $X_{i}=1$ if the three edges of the triplet t_{i} appear in the graph, so that t_{i} forms a triangle in the graph. Otherwise $X_{i}=0$. Let $X=\sum_{i=1}^{\binom{n}{3}} X_{i}$.
(a) Compute $E[X]$.
(b) Use (a) to show that if p is $o\left(\frac{1}{n}\right)$, then $\lim _{n \rightarrow \infty} \operatorname{Pr}(X>0)=0$. (Note that we are using the small o-notation here.)
(c) Show that $\operatorname{Var}\left[X_{i}\right] \leq p^{3}$.
(d) Show that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=p^{5}-p^{6}$ for $O\left(n^{4}\right)$ pairs $i \neq j$, otherwise $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$.
(e) Show that $\operatorname{Var}[X]=O\left(n^{3} p^{3}+n^{4} p^{5}\right)$.
(f) Conclude that if p is $\omega\left(\frac{1}{n}\right)$, then $\lim _{n \rightarrow \infty} \operatorname{Pr}(X=0)=0$.

Partner 1
Partner 2

Homework 4

Partner 3

Problem 3

We can generalize the problem of finding a large cut in a graph to finding a large k-cut. A k-cut is a partition of the vertices into k disjoint sets, and the value of a cut is the number of all edges crossing from one of the k sets to another.
(a) In class (also in section 6.2.1 in the book), we considered 2-cuts, and showed using the probabilistic method that any graph G with m edges has a cut with value at least $m / 2$. Generalize this argument to show that any graph G with m edges has a k-cut with at value at least $(k-1) m / k$.
(b) Show how to use the conditional expectation argument (as we did in class, as described in section 6.3), to give a deterministic algorithm for finding such a cut.

Partner 1
Partner 2
Partner 3

Problem 4

We use the method of conditional probabilities to design a deterministic algorithm for the Set Balancing problem. Let A be an $n \times n$ matrix with entries in $\{0,1\}$ and let b be an n-vector with entries in $\{-1,1\}$. Let $\bar{c}=A \bar{b}$. Our goal is to minimize $\|A \bar{b}\|_{\infty}=\max _{1 \leq i \leq n}\left|c_{i}\right|$. We showed before that if b is chosen uniformly at random then

$$
\operatorname{Pr}\left(\|A \bar{b}\|_{\infty} \geq \sqrt{4 n \log n}\right) \leq \frac{2}{n}
$$

Consider the following algorithm:

- Set $b_{1}=1$
- for $i=2$ to n :
- Let $\hat{b}_{1}, \ldots, \hat{b}_{i-1}$ be the assignments to b_{1}, \ldots, b_{i-1}.
- Choose $\hat{b}_{i} \in\{-1,1\}$ that minimizes $\max _{1 \leq k \leq n}\left|\sum_{j=1}^{i} a_{k, j} \hat{b}_{j}\right|$.
(a) Prove that if

$$
\operatorname{Pr}\left(\|A \bar{b}\|_{\infty} \geq \sqrt{4 n \log n} \mid \hat{b}_{1} \ldots, \hat{b}_{i-1}\right) \leq \frac{2}{n}
$$

then there must be an assignment \hat{b}_{i}, such that

$$
\operatorname{Pr}\left(\|A \bar{b}\|_{\infty} \geq \sqrt{4 n \log n} \mid \hat{b}_{1} \ldots, \hat{b}_{i}\right) \leq \frac{2}{n}
$$

(b) Use conditional probabilities to prove that the above algorithm gives the required result, i.e., if $\bar{b}=\left[\hat{b}_{1}, \ldots, \hat{b}_{n}\right]^{T}$, then

$$
\|A \bar{b}\|_{\infty} \leq \sqrt{4 n \log n}
$$

Partner 1
Partner 2

Homework 4

CSCI 1550 / 2540
Partner 3

Problem 5

Suppose we are given an n-vertex undirected graph $G=(V, E)$, where the vertices are numbered $1,2, \ldots, n$. An independent set of G is a subset $W \subseteq V$ of the vertices such that there is not an edge $e \in E$ connecting two vertices in W. We wish to find a (hopefully large) independent set in G. Given a permutation σ of the vertices, define a subset $S(\sigma)$ of the vertices as follows: for each vertex $i, i \in S(\sigma)$ if and only if no neighbor j of i precedes i in the permutation σ.
(a) Show that each $S(\sigma)$ is an independent set in G.
(b) Suggest a natural randomized algorithm to produce σ, for which you can show that the expected cardinality of $S(\sigma)$ is

$$
\sum_{i=1}^{n} \frac{1}{d_{i}+1}
$$

where d_{i} denotes the degree of vertex i.
(c) Prove that G has an independent set of size at least $\sum_{i=1}^{n} \frac{1}{d_{i}+1}$.

