Partner 2 Partner 3	Homework 4	CSCI 1550 / 2540 May 3rd, 2024
Partner 1		

Due: May 3rd, 2024 at 2:20pm

Remember to show your work for each problem to receive full credit.

Problem 1

Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be two range spaces. Prove that if $\mathcal{R}' \subseteq \mathcal{R}$ then the VC dimension of S' is no larger than the VC dimension of S.

Partner 1 Partner 2 Partner 3

Homework 4

Problem 2

Consider a random graph $G_{n,p}$ with *n* vertices and each pair of vertices independently connected by an edge with probability *p*. We prove a threshold for the existence of triangles in the graph.

Let $t_1, \ldots, t_{\binom{n}{3}}$ be an enumeration of all triplets of three vertices in the graph. Let $X_i = 1$ if the three edges of the triplet t_i appear in the graph, so that t_i forms a triangle in the graph. Otherwise $X_i = 0$. Let $X = \sum_{i=1}^{\binom{n}{3}} X_i$.

- (a) Compute E[X].
- (b) Use (a) to show that if p is $o(\frac{1}{n})$, then $\lim_{n\to\infty} \Pr(X > 0) = 0$. (Note that we are using the small o-notation here.)
- (c) Show that $Var[X_i] \leq p^3$.
- (d) Show that $Cov(X_i, X_j) = p^5 p^6$ for $O(n^4)$ pairs $i \neq j$, otherwise $Cov(X_i, X_j) = 0$.
- (e) Show that $Var[X] = O(n^3p^3 + n^4p^5)$.
- (f) Conclude that if p is $\omega(\frac{1}{n})$, then $\lim_{n\to\infty} \Pr(X=0) = 0$.

Homework 4

Problem 3

We can generalize the problem of finding a large cut in a graph to finding a large k-cut. A k-cut is a partition of the vertices into k disjoint sets, and the value of a cut is the number of all edges crossing from one of the k sets to another.

- (a) In class (also in section 6.2.1 in the book), we considered 2-cuts, and showed using the probabilistic method that any graph G with m edges has a cut with value at least m/2. Generalize this argument to show that any graph G with m edges has a k-cut with at value at least (k-1)m/k.
- (b) Show how to use the conditional expectation argument (as we did in class, as described in section 6.3), to give a deterministic algorithm for finding such a cut.

Partner 1 Partner 2 Partner 3

Homework 4

Problem 4

We use the method of conditional probabilities to design a deterministic algorithm for the Set Balancing problem. Let A be an $n \times n$ matrix with entries in $\{0, 1\}$ and let \bar{b} be an n-vector with entries in $\{-1, 1\}$. Let $\bar{c} = A\bar{b}$. Our goal is to minimize $||A\bar{b}||_{\infty} = \max_{1 \le i \le n} |c_i|$. We showed before that if \bar{b} is chosen uniformly at random then

$$\Pr(\|A\bar{b}\|_{\infty} \ge \sqrt{4n\log n}) \le \frac{2}{n}.$$

Consider the following algorithm:

- Set $b_1 = 1$
- for i = 2 to n:
 - Let $\hat{b}_1, \ldots, \hat{b}_{i-1}$ be the assignments to b_1, \ldots, b_{i-1} . - Choose $\hat{b}_i \in \{-1, 1\}$ that minimizes $\max_{1 \le k \le n} \left| \sum_{j=1}^i a_{k,j} \hat{b}_j \right|$.
- (a) Prove that if

$$\Pr(\|A\bar{b}\|_{\infty} \ge \sqrt{4n\log n} \mid \hat{b}_1 \dots, \hat{b}_{i-1}) \le \frac{2}{n},$$

then there must be an assignment \hat{b}_i , such that

$$\Pr(\|A\bar{b}\|_{\infty} \ge \sqrt{4n\log n} \mid \hat{b}_1 \dots, \hat{b}_i) \le \frac{2}{n}$$

(b) Use conditional probabilities to prove that the above algorithm gives the required result, i.e., if $\bar{b} = [\hat{b}_1, \dots, \hat{b}_n]^T$, then

$$\|A\bar{b}\|_{\infty} \le \sqrt{4n\log n}.$$

Homework 4

Problem 5

Suppose we are given an *n*-vertex undirected graph G = (V, E), where the vertices are numbered 1, 2, ..., n. An independent set of G is a subset $W \subseteq V$ of the vertices such that there is not an edge $e \in E$ connecting two vertices in W. We wish to find a (hopefully large) independent set in G. Given a permutation σ of the vertices, define a subset $S(\sigma)$ of the vertices as follows: for each vertex $i, i \in S(\sigma)$ if and only if no neighbor j of i precedes i in the permutation σ .

- (a) Show that each $S(\sigma)$ is an independent set in G.
- (b) Suggest a natural randomized algorithm to produce σ , for which you can show that the expected cardinality of $S(\sigma)$ is

$$\sum_{i=1}^{n} \frac{1}{d_i + 1}$$

where d_i denotes the degree of vertex i.

(c) Prove that G has an independent set of size at least $\sum_{i=1}^{n} \frac{1}{d_i+1}$.