CS155/254: Probabilistic Methods in
Computer Science

Chapter 13.1: Martingales

Probability and
Computing
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Hoeffding's Bound

Theorem
Let Xi,..., X, be independent random variables with E[X;| = p;
and Pr(B; < X; < Bj+¢;) =1, then

262

n n
PSS X = Yol > ) < e T
=l =1

Do we need independence?
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Martingales

A sequence of random variables Zy, Z1, ... is a martingale with
respect to the sequence Xg, X1, ... if for all n > 0 the following
hold:

® Z, is a function of Xp, X1,..., X;;

® E[|Z,]] < o

9 E[Zn+1‘X07X1, Ce. ,Xn] = Zn;

Definition
A sequence of random variables 7y, 73, ... is a martingale when it
is a martingale with respect to itself, that is

0 E[|Z,]] < oo

® E[Z, 11|20, 4, ..., 2] = Zp;
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Conditioning Defines a Probability Space
Let (€2, Pr(-)) be a probability space.
Let B be an event in Q, Pr(B) > 0.
We show that (B, Pr(- | B)) is a probability space.
@ Forany EC B,

0§Pr(E|B):Pr£f(g)B)§l

® Let £ and E; be disjoint events in B,

Pr(E1 UE; | B) Pr((ELUE) N B)

Pr(B)
_ Pr(EENB)  Pr(E2NB)
Pr(B) Pr(B)

= Pr(E1 | B)+ Pr(Ex | B)
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Conditional Expectation

E[Y|Z=2=) yP(Y=y|Z=2),

where the summation is over all y in the range of Y.

Note that E[Y | Z] is a random variable (a function of Z)

Lemma

For any random variables X and Y/,

E[X] = Ev[Ex[X | Y]l =) Pr(Y =y)EX | Y =y],

y

where the sum is over all values in the range of Y.
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Lemma

For any random variables X and Y,

E[X] = Ey[Ex[X | YII=) Pr(Y =y)E[X | Y =y],
y
where the sum is over all values in the range of Y.

Proof
ZPrYZy)E[XIYzy]
- ZPrY nyPr =x|Y=y)
- szpr =x|Y=y)Pr(Y =y)
ZZxPr =xNY=y)= ZxPr x) = E[X].
<y

Ol
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Example

Y - the number of students attending class, Y ~ B(n, p)
X - the number of questions asked in class is X|y_, ~ B(|\/y].q).

All events are independent

E[X|Y =y]=ql\/y| - a constant
E[X | Y] =q|VY] - a random variable

EX] = Ev[Ex[X | Y] = Ey[qlVY]]
= qE[|[VY]] < aVE[Y] = qymp
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Martingales

A sequence of random variables Zy, Z1, ... is a martingale with
respect to the sequence Xg, X1, ... if for all n > 0 the following
hold:

® Z, is a function of Xp, X1,..., X;;

® E[|Z,]] < o

9 E[Zn+1‘X07X1, Ce. ,Xn] = Zn;

Definition
A sequence of random variables 7y, 73, ... is a martingale when it
is a martingale with respect to itself, that is

0 E[|Z,]] < oo

® E[Z, 11|20, 4, ..., 2] = Zp;
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Martingale Example

A series of fair games (E[gain] = 0), not necessarily independent..
Game 1: bet $1.

Game / > 1: bet 2/ if won in round i — 1; bet i otherwise.

X; = amount won in ith game. (X; < 0 if ith game lost).

Z; = total winnings at end of /ith game.
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Example

X; = amount won in ith game. (X; < 0 if /th game lost).
Z; = total winnings at end of ith game.

Z1,2Z>, ... is martingale with respect to X1, Xo, ...

E[X;] = 0.

E[Z] = ¥5j_4 EIX] =0 < ox.

E[Zis1]X1, X2, ..., Xi] = Zi + E[Xipa] = Z;.
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Efficient Market Hypothesis

The efficient markets hypothesis (EMH) maintains that market
prices fully reflect all available information. Samuelson (1965),
Fama (1963);

For simplicity assume an asset that is paying no dividend, and
assume 0 interest rate (so value is not discounted in time).

Let X; be the price of a unit asset at time t.

If I know that at time t + 1 the price will be X; 11 =
sale the asset now for less than c.

If | know that at time t + 1 the price will be X;11 = ¢, | will not
buy the asset now for more than c.

¢, | will not

Xt — E[Xt+]_ ‘ XO,.. Xt]

Xo, X1,...,X¢, is a martingale.
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Gambling Strategies

| play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2/ if | won in round i — 1; bet i otherwise.
X; = amount won in ith game. (X; < 0 if ith game lost).
Z; = total winnings at end of /th game.

Assume that (before starting to play) | decide to quit after k
games: what are my expected winnings?
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Lemma

Let 2y, 21,25 ... be a martingale with respect to Xo, X1,.... For
any fixed n,

EX[O:n] [Zn] - EXo [ZO] :

(X[OI]:X(),X,)

Proof.
Since Z; is a martingale Ex;[Z;| X0, X1, ..., Xi—1] = Zi—1.
Then

Exio:i—1[Zi-1] = Ex[o:i—1[Ex;[Zi| X0, X1, - - -, Xi—1]] = Exqo:1[Zi]

Thus,
EX[O:n] [Zn] = EX[O:nfl] [anl] = co009= E[ZO]
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Gambling Strategies

| play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2/ if | won in round i — 1; bet i otherwise.
X; = amount won in ith game. (X; < 0 if ith game lost).
Z; = total winnings at end of ith game.

Assume that (before starting to gamble) we decide to quit after k
games: what are my expected winnings?

E[Zd] = E[Z1] = 0.
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A Different Strategy

Same gambling game. What happens if I:
® play a random number of games?

® decide to stop only when | have won $10007
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Stopping Time

Definition

A non-negative, integer random variable T is a stopping time for
the sequence Zp, Z1, ... if the event “T = n" depends only on the
value of random variables 7y, 71, ..., Z,.

Intuition: corresponds to a strategy for determining when to stop a
sequence based only on values seen so far.

In the gambling game:
® first time | win 10 games in a row: is a stopping time;

® the last time when | win: is not a stopping time.
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Consider again the gambling game: let T be a stopping time.
Z; = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[Z7]?

Fair game: E[Z;] = E[Z] = 07

“T =first time my total winnings are at least $1000" is a stopping
time, and E[Z7] > 1000...
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Martingale Stopping Theorem

Theorem

If Zy, Z1, ... is a martingale with respect to X1, Xz, ...

a stopping time for X1, Xo, ... then (if T is finite),
E[Z7] = E[Z]

whenever one of the following holds:
@ there is a constant c such that, for all i, |Z;| < c;
® T is bounded;

® E[T] < oo, and there is a constant ¢ such that
EUZ,'Jrl = Z,‘HX;[, o ,X,'] < cC.

and if T is
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Proof of Martingale Stopping Theorem (Sketch)

Define a sequence Yp, Y1,... such that

v _ | Z T
Tl zr T<i

Lemma

The sequence Yy, Y1, ... is a martingale with respect to

@ VY, is determined by 7o, ..., Z,.

@ E[|Ya]] < maxo<i<n E[|Xi[] < 30, E[IXi|] < 00

e E[Yn+1|207 Zl, ceey Zn] = Yn == EZn+1 [( Yn+1 - Yn)l(T>n)] =
Yo+ Ez, .. [(Zns1 — Z0)]Pr(T > n) = Ya;

Since Pr(T > n) is independent of Z,.1, and E[(Z,41 — Z,)] = 0.
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Since Yp, Yi,... is a martingale, for any n > 0, E[Y,| = E[Z],
and
Ii_)m E[Y,] = E[Yo] = E[Z).

Since T is finite, Zi = limy 00 Ziin(n,7) = liMp—s00 Ya-
We want to show that E[Z7] = lim,_,o E[Y,] = E[Z0].

We use a simple version of the Uniform Convergence Theorem:

Theorem

Let Wy, Wh, ... be a sequence of random variables such that
limp—oo W, = W (pointwise), and max;|W;| < M, where M is
either a constant or a random variable with E[|M|] < oo, then

lim E[W,] = E[W].
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Proof of Martingale Stopping Theorem (Sketch)
Since T is finite, limpo0c Yn = limp—s00 Zmin(n, 1) = ZT-
We need to show that |Y,| < M.
@ there is a constant c¢ such that, for all /,
| Yol < maxo<i<n|Zi] < ¢, c =M < .
@® T is bounded - |Y,| < maxo<i<max 7|Zi| < M < o0
©® E[T] < oo, and there is a constant ¢ such that
E[|Zi+1— Zil|X1,.... Xi] < ¢

Zij|<c-

Yo =20+ Z(Zi+l — Z)li<t < |Zo| + Z |Zis1 — Zi|licT = M.

i=1 i=1

E[IM]] E[|Z0|] + ZE[EUZm — Zi||X,..., Xi] Lic7]

E[|Zo[] + ¢ Pr(T > 1)

i=1

E[|Z|] 4+ cE[T] < o0

IN

IA
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Martingale Stopping Theorem Applications

We play a sequence of fair game with the following stopping rules:

@ 7 is bounded, E[Z7] = E[Z].
@® T is the first time we made $1000: E[T] is unbounded.

©® We double until the first win. E[T] = 2 but
E[‘Zi+]_ — ZiHXl-, ce ,X,'] is unbounded.
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Example: The Gambler's Ruin

Consider a sequence of independent, fair 2-player gambling
games.
In each round, each player wins or loses $1 with probability %
X; = amount won by player 1 on /th round.

® |f player 1 has lost in round i: X; < 0.
Z; = total amount won by player 1 after ith rounds.

e 7, =0.
Game ends when one player runs out of money

® Player 1 must stop when she loses net ¢; dollars (Z; = —¢1)

® Player 2 terminates when she loses net ¢, dollars (Z; = ().

q = probability game ends with player 1 winning /> dollars.
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Example: The Gambler's Ruin

e T = first time player 1 wins ¢, dollars or loses /1 dollars.
® T is a stopping time for Xy, Xo,....

® /y,Z1,... is a martingale.
® /'s are bounded.

® Martingale Stopping Theorem: E[Z7] = E[Zy] = 0.
E[ZT] = qu — (1 — q)fl =0

U+ b

q
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Example: A Ballot Theorem

e (Candidate A and candidate B run for an election.

® Candidate A gets a votes.
® Candidate B gets b votes.

® 3> b.

® \/otes are counted in random order:

® chosen from all permutations on n = a + b votes.

® What is the probability that A is always ahead in the count?
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Example: A Ballot Theorem

® S; = number of votes A is leading by after / votes counted
® If Ais trailing: 5; < 0.

e S, =a—b.

e For0< k<n-1: Xk:i"_‘kk.

® Consider Xp, X1,..., X,.

® This sequence goes backward in time!

E[Xk| X0, X1, ..., Xk_1] = ?
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Example: A Ballot Theorem
E[Xk| X0, X1, . .., Xk_1] = ?

e Conditioning on Xy, X1, ..., Xx_1: equivalent to conditioning
on Sn, Sn_l, vy Snf(kfl)l

® 5, = number of votes for A after first / votes are counted.

® (n— k+ 1)th vote: random vote among these first n — k + 1
votes.

s . _ Sn—(k—1) +1 if (n — k+ 1)th vote is for B
ke Sn—(k—1) — 1 if (n — k + 1)th vote is for A

. —k+1—a,_ (k-1
S,_(k—1)+1 with prob. I o)
Sn—k= { (k1) an,(r;jl()kil)

Sn—(k—=1) — 1 with prob. (k=T
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n—k+1-— an—(k-1)
(n—k+1)
dn—(k—1)
+ (Sn—(k-1) — 1)m
n—k
Sn-(k-1) = (k—1)

E[Sh—klSn—(k-1)] = (Sn—(k-1) +1)

Eg!nce 235 (k1) =N —k+1=an (k1) = bo(k-1) = Sn-(k-1))
Ince

n—k+1-2a, (k_1)— = bp_(k—1) = 3n—(k-1) = —Sn—(k-1))

Sn—k
n—k
Sn—(k-1)
n—(k—1)
= Xk-1

E[Xe|Xo, X1, ..., Xk_1] = E [ Snoee s So ()

= Xo, X1,...,X, is a martingale.
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Example: A Ballot Theorem

T_ min{k < n—1: X, =0} ifsuch k exists
S n—1 otherwise

® T is a stopping time.

® T is bounded.

e Martingale Stopping Theorem:

E[Sh] _a- b

E[X7] = E[Xo] = ponyal

Two cases:
@ A leads throughout the count.
® A does not lead throughout the count.
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@ A leads throughout the count.
ForO0< k<n-—1:5,_, >0, then X, > 0.

T=n-1.
X1 = Xp—1 = 51.

A gets the first vote in the count: S; = 1, then X+ = 1.
® A does not lead throughout the count.
For some k: S, = 0. Then X, = 0.

T=k<n-1.

Xt =0.
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Example: A Ballot Theorem

Putting all together:
@ A leads throughout the count: Xy = 1.
® A does not lead throughout the count: X+ =10

a—»>b

ElX7] = a+b

= 1% Pr(Case 1) + 0« Pr(Case 2) .

That is

a—>b
a+ b’

Pr(A leads throughout the count) =
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