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Hoeffding’s Bound

Theorem

Let X1, . . . ,Xn be independent random variables with E[Xi ] = µi
and Pr(Bi ≤ Xi ≤ Bi + ci ) = 1, then

Pr(|
n∑

i=1

Xi −
n∑

i=1

µi | ≥ ε) ≤ e
− 2ε2∑n

i=1
c2
i

Do we need independence?
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Martingales

Definition

A sequence of random variables Z0,Z1, . . . is a martingale with
respect to the sequence X0,X1, . . . if for all n ≥ 0 the following
hold:

1 Zn is a function of X0,X1, . . . ,Xn;

2 E[|Zn|] <∞;

3 E[Zn+1|X0,X1, . . . ,Xn] = Zn;

Definition

A sequence of random variables Z0,Z1, . . . is a martingale when it
is a martingale with respect to itself, that is

1 E[|Zn|] <∞;

2 E[Zn+1|Z0,Z1, . . . ,Zn] = Zn;
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Conditioning Defines a Probability Space

Let (Ω,Pr(·)) be a probability space.

Let B be an event in Ω, Pr(B) > 0.

We show that (B,Pr(· | B)) is a probability space.

1 For any E ⊆ B,

0 ≤ Pr(E | B) =
Pr(E ∩ B)

Pr(B)
≤ 1

2 Let E1 and E2 be disjoint events in B,

Pr(E1 ∪ E1 | B) =
Pr((E1 ∪ E2) ∩ B)

Pr(B)

=
Pr(E1 ∩ B)

Pr(B)
+

Pr(E2 ∩ B)

Pr(B)

= Pr(E1 | B) + Pr(E2 | B)
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Conditional Expectation

Definition

E[Y | Z = z ] =
∑
y

y Pr(Y = y | Z = z) ,

where the summation is over all y in the range of Y .

Note that E[Y | Z ] is a random variable (a function of Z )

Lemma

For any random variables X and Y ,

E[X ] = EY [EX [X | Y ]] =
∑
y

Pr(Y = y)E[X | Y = y ] ,

where the sum is over all values in the range of Y .
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Lemma

For any random variables X and Y ,

E[X ] = EY [EX [X | Y ]] =
∑
y

Pr(Y = y)E[X | Y = y ] ,

where the sum is over all values in the range of Y .

Proof. ∑
y

Pr(Y = y)E[X | Y = y ]

=
∑
y

Pr(Y = y)
∑
x

x Pr(X = x | Y = y)

=
∑
x

∑
y

x Pr(X = x | Y = y) Pr(Y = y)

=
∑
x

∑
y

x Pr(X = x ∩ Y = y) =
∑
x

x Pr(X = x) = E[X ].
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Example

Y - the number of students attending class, Y ∼ B(n, p)

X - the number of questions asked in class is X |Y=y ∼ B(b√yc, q).

All events are independent

E [X | Y = y ] = qb√yc - a constant

E [X | Y ] = qb
√
Y c - a random variable

E [X ] = EY [EX [X | Y ]] = EY [qb
√
Y c]

= qE [b
√
Y c] ≤ q

√
E [Y ] = q

√
np
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Martingales

Definition

A sequence of random variables Z0,Z1, . . . is a martingale with
respect to the sequence X0,X1, . . . if for all n ≥ 0 the following
hold:

1 Zn is a function of X0,X1, . . . ,Xn;

2 E[|Zn|] <∞;

3 E[Zn+1|X0,X1, . . . ,Xn] = Zn;

Definition

A sequence of random variables Z0,Z1, . . . is a martingale when it
is a martingale with respect to itself, that is

1 E[|Zn|] <∞;

2 E[Zn+1|Z0,Z1, . . . ,Zn] = Zn;
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Martingale Example

A series of fair games (E[gain] = 0), not necessarily independent..

Game 1: bet $1.

Game i > 1: bet 2i if won in round i − 1; bet i otherwise.

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.
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Example

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.

Z1,Z2, . . . is martingale with respect to X1,X2, . . .

E[Xi ] = 0.

E[Zi ] =
∑i

j=1 E[Xj ] = 0 <∞.

E[Zi+1|X1,X2, . . . ,Xi ] = Zi + E[Xi+1] = Zi .
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Efficient Market Hypothesis

The efficient markets hypothesis (EMH) maintains that market
prices fully reflect all available information. Samuelson (1965),
Fama (1963);

For simplicity assume an asset that is paying no dividend, and
assume 0 interest rate (so value is not discounted in time).

Let Xt be the price of a unit asset at time t.
If I know that at time t + 1 the price will be Xt+1 = c , I will not
sale the asset now for less than c .
If I know that at time t + 1 the price will be Xt+1 = c , I will not
buy the asset now for more than c .

Xt = E [Xt+1 | X0, . . .Xt ]

X0,X1, . . . ,Xt , is a martingale.
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Gambling Strategies

I play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2i if I won in round i − 1; bet i otherwise.

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.

Assume that (before starting to play) I decide to quit after k
games: what are my expected winnings?
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Lemma

Let Z0,Z1,Z2, . . . be a martingale with respect to X0,X1, . . . . For
any fixed n,

EX [0:n][Zn] = EX0 [Z0] .

(X [0 : i ] = X0, . . . ,Xi )

Proof.

Since Zi is a martingale EXi
[Zi |X0,X1, . . . ,Xi−1] = Zi−1.

Then

EX [0:i−1][Zi−1] = EX [0:i−1][EXi
[Zi |X0,X1, . . . ,Xi−1]] = EX [0:i ][Zi ]

Thus,
EX [0:n][Zn] = EX [0:n−1][Zn−1] = . . . ,= E[Z0]
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Gambling Strategies

I play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2i if I won in round i − 1; bet i otherwise.

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.

Assume that (before starting to gamble) we decide to quit after k
games: what are my expected winnings?

E[Zk ] = E[Z1] = 0.
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A Different Strategy

Same gambling game. What happens if I:

• play a random number of games?

• decide to stop only when I have won $1000?
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Stopping Time

Definition

A non-negative, integer random variable T is a stopping time for
the sequence Z0,Z1, . . . if the event “T = n” depends only on the
value of random variables Z0,Z1, . . . ,Zn.

Intuition: corresponds to a strategy for determining when to stop a
sequence based only on values seen so far.

In the gambling game:

• first time I win 10 games in a row: is a stopping time;

• the last time when I win: is not a stopping time.
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Consider again the gambling game: let T be a stopping time.

Zi = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[ZT ]?

Fair game: E[Zk ] = E[Z0] = 0?

“T =first time my total winnings are at least $1000” is a stopping
time, and E[ZT ] > 1000...
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Martingale Stopping Theorem

Theorem

If Z0,Z1, . . . is a martingale with respect to X1,X2, . . . and if T is
a stopping time for X1,X2, . . . then (if T is finite),

E[ZT ] = E[Z0]

whenever one of the following holds:

1 there is a constant c such that, for all i , |Zi | ≤ c ;

2 T is bounded;

3 E[T ] <∞, and there is a constant c such that
E
[
|Zi+1 − Zi |

∣∣X1, . . . ,Xi

]
< c.
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Proof of Martingale Stopping Theorem (Sketch)

Define a sequence Y0,Y1, . . . such that

Yi =

{
Zi if T > i
ZT if T ≤ i

Lemma

The sequence Y0,Y1, . . . is a martingale with respect to
Z0,Z1, . . . .

Proof.

1 Yn is determined by Z0, . . . ,Zn.

2 E [|Yn|] ≤ max0≤i≤n E [|Xi |] ≤
∑n

i=1 E [|Xi |] <∞
3 E[Yn+1|Z0,Z1, . . . ,Zn] = Yn + EZn+1 [(Yn+1 − Yn)1(T>n)] =

Yn + EZn+1 [(Zn+1 − Zn)]Pr(T > n) = Yn;

Since Pr(T > n) is independent of Zn+1, and E [(Zn+1 − Zn)] = 0.
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Since Y0,Y1, . . . is a martingale, for any n ≥ 0, E [Yn] = E [Z0],
and

lim
n→∞

E [Yn] = E [Y0] = E [Z0].

Since T is finite, Zt = limn→∞ Zmin(n,T ) = limn→∞Yn.
We want to show that E [ZT ] = limn→∞ E [Yn] = E [Z0].

We use a simple version of the Uniform Convergence Theorem:

Theorem

Let W0,W1, . . . be a sequence of random variables such that
limn→∞Wn = W (pointwise), and maxi |Wi | ≤ M, where M is
either a constant or a random variable with E [|M|] <∞, then

lim
n→∞

E [Wn] = E [W ].

20 / 31



Proof of Martingale Stopping Theorem (Sketch)

Since T is finite, limn→∞ Yn = limn→∞ Zmin(n,T ) = ZT .

We need to show that |Yn| ≤ M.

1 there is a constant c such that, for all i , |Zi | ≤ c -
|Yn| ≤ max0≤i≤n|Zi | ≤ c , c = M <∞.

2 T is bounded - |Yn| ≤ max0≤i≤maxT |Zi | ≤ M <∞
3 E[T ] <∞, and there is a constant c such that

E
[
|Zi+1 − Zi |

∣∣X1, . . . ,Xi

]
< c

Yn = Z0 +
∞∑
i=1

(Zi+1 − Zi )1i≤T ≤ |Z0|+
∞∑
i=1

|Zi+1 − Zi |1i≤T = M.

E [|M|] = E [|Z0|] +
∞∑
i=1

E[E
[
|Zi+1 − Zi |

∣∣X1, . . . ,Xi

]
1i≤T ]

≤ E [|Z0|] + c
∞∑
i=1

Pr(T ≥ i)

≤ E [|Z0|] + cE [T ] <∞
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Martingale Stopping Theorem Applications

We play a sequence of fair game with the following stopping rules:

1 T is bounded, E[ZT ] = E[Z0].

2 T is the first time we made $1000: E[T ] is unbounded.

3 We double until the first win. E[T ] = 2 but
E
[
|Zi+1 − Zi |

∣∣X1, . . . ,Xi

]
is unbounded.
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Example: The Gambler’s Ruin

• Consider a sequence of independent, fair 2-player gambling
games.

• In each round, each player wins or loses $1 with probability 1
2 .

• Xi = amount won by player 1 on ith round.
• If player 1 has lost in round i : Xi < 0.

• Zi = total amount won by player 1 after ith rounds.
• Z0 = 0.

• Game ends when one player runs out of money
• Player 1 must stop when she loses net `1 dollars (Zt = −`1)
• Player 2 terminates when she loses net `2 dollars (Zt = `2).

• q = probability game ends with player 1 winning `2 dollars.
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Example: The Gambler’s Ruin

• T = first time player 1 wins `2 dollars or loses `1 dollars.
• T is a stopping time for X1,X2, . . . .

• Z0,Z1, . . . is a martingale.
• Zi ’s are bounded.

• Martingale Stopping Theorem: E[ZT ] = E[Z0] = 0.

E[ZT ] = q`2 − (1− q)`1 = 0

q =
`1

`1 + `2
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Example: A Ballot Theorem

• Candidate A and candidate B run for an election.

• Candidate A gets a votes.

• Candidate B gets b votes.

• a > b.

• Votes are counted in random order:

• chosen from all permutations on n = a + b votes.

• What is the probability that A is always ahead in the count?
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Example: A Ballot Theorem

• Si = number of votes A is leading by after i votes counted

• If A is trailing: Si < 0.

• Sn = a− b.

• For 0 ≤ k ≤ n − 1: Xk =
Sn−k

n−k .

• Consider X0,X1, . . . ,Xn.

• This sequence goes backward in time!

E[Xk |X0,X1, . . . ,Xk−1] = ?
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Example: A Ballot Theorem

E[Xk |X0,X1, . . . ,Xk−1] = ?

• Conditioning on X0,X1, . . . ,Xk−1: equivalent to conditioning
on Sn, Sn−1, . . . ,Sn−(k−1),

• ai = number of votes for A after first i votes are counted.

• (n − k + 1)th vote: random vote among these first n − k + 1
votes.

Sn−k =

{
Sn−(k−1) + 1 if (n − k + 1)th vote is for B
Sn−(k−1) − 1 if (n − k + 1)th vote is for A

Sn−k =

{
Sn−(k−1) + 1 with prob.

n−k+1−an−(k−1)

n−(k−1)
Sn−(k−1) − 1 with prob.

an−(k−1)

n−(k−1)
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E[Sn−k |Sn−(k−1)] = (Sn−(k−1) + 1)
n − k + 1− an−(k−1)

(n − k + 1)

+ (Sn−(k−1) − 1)
an−(k−1)

(n − k + 1)

= Sn−(k−1)
n − k

n − (k − 1)

(Since 2an−(k−1) − n − k + 1 = an−(k−1) − bn−(k−1) = Sn−(k−1))
(Since
n − k + 1− 2an−(k−1)− = bn−(k−1) − an−(k−1) = −Sn−(k−1))

E[Xk |X0,X1, . . . ,Xk−1] = E

[
Sn−k
n − k

∣∣∣∣ Sn, . . . ,Sn−(k−1)]
=

Sn−(k−1)
n − (k − 1)

= Xk−1

=⇒ X0,X1, . . . ,Xn is a martingale.
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Example: A Ballot Theorem

T =

{
min{k < n − 1 : Xk = 0} if such k exists
n − 1 otherwise

• T is a stopping time.

• T is bounded.

• Martingale Stopping Theorem:

E[XT ] = E[X0] =
E[Sn]

n
=

a− b

a + b
.

Two cases:

1 A leads throughout the count.

2 A does not lead throughout the count.
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1 A leads throughout the count.

For 0 ≤ k ≤ n − 1: Sn−k > 0, then Xk > 0.

T = n − 1.

XT = Xn−1 = S1.

A gets the first vote in the count: S1 = 1, then XT = 1.

2 A does not lead throughout the count.

For some k: Sk = 0. Then Xk = 0.

T = k < n − 1.

XT = 0.

30 / 31



Example: A Ballot Theorem

Putting all together:

1 A leads throughout the count: XT = 1.

2 A does not lead throughout the count: XT = 0

E[XT ] =
a− b

a + b
= 1 ∗ Pr(Case 1) + 0 ∗ Pr(Case 2) .

That is

Pr(A leads throughout the count) =
a− b

a + b
.

31 / 31


