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Chapter 13.2: Martingale’s Large Deviation Bound



Martingales

Definition

A sequence of random variables Z0,Z1, . . . is a martingale with
respect to the sequence X0,X1, . . . if for all n ≥ 0 the following
hold:

1 Zn is a function of X0,X1, . . . ,Xn;

2 E[|Zn|] <∞;

3 E[Zn+1|X0,X1, . . . ,Xn] = Zn;

Definition

A sequence of random variables Z0,Z1, . . . is a martingale when it
is a martingale with respect to itself, that is

1 E[|Zn|] <∞;

2 E[Zn+1|Z0,Z1, . . . ,Zn] = Zn;



Martingale Stopping Theorem

Theorem

If Z0,Z1, . . . is a martingale with respect to X1,X2, . . . and if T is
a stopping time for X1,X2, . . . then (if T is finite),

E[ZT ] = E[Z0]

whenever one of the following holds:

1 there is a constant c such that, for all i , |Zi | ≤ c;

2 T is bounded;

3 E[T ] <∞, and there is a constant c such that
E
[
|Zi+1 − Zi |

∣∣X1, . . . ,Xi

]
< c.



Compound Stochastic Process

Examples:

1 Two stages game:

1 roll one die; let X be the outcome;
2 roll X standard dice; your gain Z is the sum of the outcomes

of the X dice.

What is your expected gain?

2 A couple expects to have X children, X ∼ G (p). They expect
each of the children to have a number of children distributed
G (r).
What is their expected number of grandchildren?



Wald’s Equation

Theorem

Let X1,X2, . . . be nonnegative, independent, identically distributed
random variables with distribution X . Let T be a stopping time for
this sequence. If T and X have bounded expectations, then

E

[
T∑
i

Xi

]
= E[T ]E[X ] .

Note that T is not independent of X1,X2, . . . .
Corollary of the martingale stopping theorem.



Proof

For i ≥ 1, let Zi =
∑i

j=1(Xj − E[X ]).

The sequence Z1,Z2, . . . is a martingale with respect to X1,X2, . . ..

1 Zi is determined by X1, . . . ,Xi

2 E [|Zi |] = E [|
∑i

j=1(Xj − E [X ])|] =≤ 2iE [|X |]
3 E [Zi+1 − Zi | X0,X1, . . . ,Xi ] = E [Xj+1 − E [X ]] = 0

E[Z1] = 0, E[T ] <∞, and

E
[
|Zi+1 − Zi |

∣∣ X1, . . . ,Xi

]
= E[|Xi+1 − E[X ]|] ≤ 2E[X ] .

We can apply the martingale stopping theorem to compute

E[ZT ] = E[Z1] = 0 .



We can apply the martingale stopping theorem to compute

E[ZT ] = E[Z1] = 0 .

0 = E[ZT ] = E

 T∑
j=1

(Xj − E[X ])

 = E

 T∑
j=1

Xj − TE[X ]


= E

 T∑
j=1

Xj

− E[T ] · E[X ] = 0,



Examples

Two stages game:

1 roll one die; let X be the outcome;

2 roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?

Yi = outcome of ith die in second stage.

E[Z ] = E

[
X∑
i=1

Yi

]
.

X is a stopping time for Y1,Y2, . . . .

By Wald’s equation:

E[Z ] = E[X ]E[Yi ] =

(
7

2

)2

.



Examples

A couple expect to have X children, X ∼ G (p). They expect each
of their children to have a number of children distributed G (r).
What is their expected number of grandchildren?

1

p
· 1

r



Example: a k-run

We flip a coin with probability p for head, q = (1− p) for tail,
until we get a consecutive sequence of k heads. What’s the
expected number of times we flip the coin?

• A switch is a head followed by a tail.

• A segment is a sequence of flips till the first switch or
consecutive sequence of k heads.

• Let Xi be the number of flips in the i segment.

• Let T be the first i with k heads.

• Expected number of flips till (including) the first head -∑
j≥1 jq

j−1p.

• Expected number of following flips till a switch before k − 2
flips -

∑k−2
j=1 jpj−1q

E[Xi ] =
∑
j≥1

jqj−1p +
k−2∑
j=1

jpj−1q + (k − 1)p(k−2)



• Let Xi be the number of flips in the i segment.

E[Xi ] =
∑
j≥1

jqj−1p +
k−2∑
j=1

jpj−1q + (k − 1)p(k−2)

• Let T be the first i with k heads.

• The probability that a segment ends with k heads is pk−1

(k − 1 heads following the first head).

E[T ] = p−(k−1)

• The expected number of coin flips is E[Xi ]E [T ] ≤ ( 1
p + 1

q ) 1
pk−1



Hoeffding’s Bound

Theorem

Let X1, . . . ,Xn be independent random variables with E[Xi ] = µi
and Pr(Bi ≤ Xi ≤ Bi + ci ) = 1, then

Pr

(∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

µi

∣∣∣∣∣ ≥ ε
)
≤ 2e

− 2ε2∑n
i=1

c2
i

Do we need independence?



Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . ,Zn be a martingale (with respect to X1,X2, . . . )
such that |Zk − Zk−1| ≤ ck . Then, for all t ≥ 0 and any λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ
2/(2

∑t
k=1 c

2
k ) .

The following corollary is often easier to apply.

Corollary

Let X0,X1, . . . be a martingale such that for all k ≥ 1,

|Xk − Xk−1| ≤ c .

Then for all t ≥ 1 and λ > 0,

Pr
(
|Xt − X0| ≥ λc

√
t
)
≤ 2e−λ

2/2 .



Example

Assume that you play a sequence of n fair games, where the bet
bi ≤ B in game i depends on the outcome of previous games.

Let Zn be the accumulated gain/loss after the n-th game.

We know that E [Zn] = 0. We’ll prove:

Pr(|Zn| ≥ λ) ≤ 2e−2λ2/nB2



Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . , be a martingale with respect to X0,X1,X2, . . . ,
such that

Bk ≤ Zk − Zk−1 ≤ Bk + ck ,

for some constants ck and for some random variables Bk that may
be functions of X0,X1, . . . ,Xk−1. Then, for any t ≥ 0 and λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k ) .



Proof
Let X k = X0, . . . ,Xk and Yi = Zi − Zi−1.

Since E[Zi | X i−1] = Zi−1,

E[Yi | X i−1] = E[Zi − Zi−1 | X i−1] = 0 .

Since Pr(Bi ≤ Yi ≤ Bi + ci | X i−1) = 1, by Hoeffding’s Lemma:

E[eβYi | X i−1] ≤ eβ
2c2i /8 .

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that
Pr(X ∈ [a, b]) = 1 and E[X ] = 0. Then for every λ > 0,

E[eλX ] ≤ eλ
2(a−b)2/8.



Proof of the Lemma

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that
Pr(X ∈ [a, b]) = 1 and E[X ] = 0. Then for every λ > 0,

E[eλX ] ≤ eλ
2(a−b)2/8.

Since f (x) = eλx is a convex function, for any α ∈ (0, 1) and
x ∈ [a, b],

f (X ) ≤ αf (a) + (1− α)f (b) .

Thus, for α = b−x
b−a ∈ (0, 1),

eλx ≤ b − x

b − a
eλa +

x − a

b − a
eλb .

Taking expectation, and using E[X ] = 0, we have

E
[
eλX

]
≤ b

b − a
eλa − a

b − a
eλb ≤ eλ

2(b−a)2/8 .



Proof of Azuma-Hoeffding Inequality

E
[
eβYi

∣∣∣ X i−1
]
≤ eβ

2c2i /8 .

EX n

[
eβ

∑n
i=1 Yi

]
= EX n−1

[
EXn

[
eβ

∑n
i=1 Yi

∣∣ X n−1
]]

= EX n−1

[
eβ

∑n−1
i=1 Yi EXn

[
eβYn | X n−1

]]
≤ eβ

2c2n/8EX n−1

[
eβ

∑n−1
i=1 Yi

]
≤ eβ

2
∑n

i=1 c
2
i /8

In the second inequality we use the fact that X n−1 determines the
values of Y1, . . . ,Yn−1



Yi = Zi − Zi−1 and E[eβ
∑n

i=1 Yi ] ≤ eβ
2
∑n

i=1 c
2
i /8

Pr(Zt − Z0 ≥ λ) = Pr

(
t∑

i=1

Yi ≥ λ

)
≤ E[eβ

∑t
i=1 Yi ]

eβλ

≤ e−λβeβ
2
∑t

i=1 c
2
i /8

For β = 4λ∑t
i=1 c

2
i

we get:

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k )

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . ,Zn be a martingale (with respect to X1,X2, . . . )
such that |Zk − Zk−1| ≤ ck . Then, for all t ≥ 0 and any λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ
2/(2

∑t
k=1 c

2
k ) .



Example

Assume that you play a sequence of n fair games, where the bet bi
in game i depends on the outcome of previous games. Let
B = maxi bi . The probability of winning or losing more than λ is
bounded by

Pr(|Zn| ≥ λ) ≤ 2e−2λ2/nB2

Pr(|Zn| ≥ λB
√
n) ≤ 2e−2λ2

Pr

|Zn| ≥ λ

√√√√ n∑
i=1

b2i

 ≤ 2e−2λ2



Application: Balls and Bins

We place m balls independently and uniformly at random into n
bins.
Let Xi = 1 if bin i is empty after all the balls were placed,
otherwise Xi = 0.

E [Xi ] = Pr(Xi = 1) =

(
1− 1

n

)m

Let F =
∑n

i=1 Xi be the number of empty bins after the m balls
are thrown. We know that

E[F ] = n

(
1− 1

n

)m

,

but the events for different bins are not independent.

Formulating the process as a (Doob) martingale we’ll get

Pr(|F − E[F ]| ≥ ε) ≤ 2e−2ε2/m



Doob Martingale

Let X1,X2, . . . ,Xn be sequence of random variables. Let
Y = f (X1, . . . ,Xn) be a random variable with E[|Y |] <∞.

For i = 0, 1, . . . , n, let

Z0 = E[Y ] = EX [1,n][f (X1, . . . ,Xn]

Zi = EX [i+1,n][Y |X1 = x1,X2 = x2, . . . ,Xi = xi ]

Zn = E[Y |X1 = x1,X2 = x2, . . . ,Xn = xn] = f (x1, . . . , xn)

Theorem

Z0,Z1, . . . ,Zn is martingale with respect to X1,X2, . . . ,Xn.



Proof
Y = f (X1, . . . ,Xn), Z0 = E[Y ],
Zi = EX [i+1,n][Y |X1 = x1, . . . ,Xi = xi ],

Z1,Z2. . . . ,Zn is a martingale iff
(1) E [|Zi ] <∞, and
(2) EX[i+1,n]

[Zi+1|X1 = x1, . . . ,Xi = xi ] = Zi .

(1) E [|Zi |] = E [|E [Y | X, . . . ,Xi ]|] ≤ E [E [|Y | | X1, . . . ,Xi ]] =
E [|Y |] <∞,
Jensen’s Inequality: If f (x) is convex then f (E [X ]) ≤ E [f (X )].

(2) EX[i+1,n]
[Zi+1|x1, x2, . . . , xi ]

= EXi+1,X[i+2,n]
[EX [i+2,n][Y |X1, . . . ,Xi+1] | x1, ..., xi ]

= EX [i+1,n][Y |x1, x2, . . . , xi ] = Zi

Past: P = x1, . . . , xi . Future: F = Xi+2, . . . ,Xn

EXi+1,F [Zi+1 | P] = EXi+1,F [EF [Y |P,Xi+1]|P] = EX [i+1,n][Y |P] = Zi

.



Simple Example

Y = f (X1, . . . ,Xn) =
∑n

i=1 Xi , Xi independent ∼ U[0, 1].

Z0 = E[Y ] = EX [1,n]f (X1, . . . ,Xn)] = E[
n∑

i=1

Xi ] = n/2

Zi = EX [i+1,n][Y |x1, . . . , xi ]

=
i∑

j=1

xj + E[
n∑
j=i

Xi ] =
i∑

j=1

xj + (n − i)/2

Zn = E[Y |x1, . . . , xn] = f (x1, . . . , xn) =
n∑

j=1

xj

EXi+1
[Zi+1|x1, . . . , xi ] = EXi+1

 i+1∑
j=1

Xi +
n − i − 1

2

∣∣x1, . . . , xi


=
i∑

j=1

xi +
n − i

2
= Zi



Example: Polya’s Urn

• Start with m balls, r red, m − r blue.
• Repeat n times:

1 Pick a ball uniformly at random, check its color and return it
to the urn.

2 If red, add a new red ball, else add a new blue ball.

Let Xi = 1 if we add a red ball at step i , else Xi = 0

We want to estimate the number of new red balls among the n
new balls, starting with ratio r/m

Sn
( r

m

)
=

n∑
i=1

Xi = f (X1, . . . ,Xn)

Claim: E[Sn( r
m )] = n r

m .

On ”average” the ratio doesn’t change:
r+n r

m
m+n =

r(1+ n
m
)

m(1+ n
m
) = r

m



Example: Polya’s Urn

Start with M balls, R red, M −R blue. Repeat n times: pick a ball
uniformly at random. Return it to the urn. If red add a red ball,
else add a blue ball.

Xi = 1 if we add a red ball in step i , else Xi = 0.

Sn(r/m) =
n∑

i=1

Xi = f (X1, . . . ,Xn)

Claim: E[Sn( r
m )] = n r

m .

Proof: By induction on t ≥ 0, that E[St ] = tr/m.

E[St+1 | St ] = St +
r + St
m + t

E[St+1] = E[E[St+1 | St ]] = E

[
St +

r + St
m + t

]
= t

r

m
+

r + tr/m

m + t
= t

r

m
+

r(1 + t/m)

m(1 + t/m)
= (t + 1)

r

m



Example: Polya’s Urn

Xi = 1 if added a red ball in step i , else Xi = 0,

Sn( r
m ) =

∑n
i=1 Xi , and E[Sn( r

m )] = n r
m

Let Zi = E[Sn| X1 = x1, . . . ,Xi = xi ].

We verify that Z1, . . . ,Zn is a martingale (which we already know,
since it’s a Doob martingale.)

Let ri = r +
∑i

j=1 xj

Zi = E[Sn| X1 = x1, . . . ,Xi = xi ] =
i∑

j=1

xj + E [Sn−i (
r +

∑i
j=1 xj

m + i
)]

=
i∑

j=1

xj + (n − i)
r +

∑i
j=1 xj

m + i
=

i∑
j=1

xj + (n − i)
ri

m + i



ri = r +
∑i

j=1 xj

Zi = E[Sn| X1 = x1, . . . ,Xi = xi ] =
∑i

j=1 xj + (n − i) ri
m+i .

E[Zi+1 | X1, . . . ,Xi ] = E[E[Sn|X1,X2, . . . ,Xi+1] | X1 = x1, . . . ,Xi = xi ]

= E

 i∑
j=1

xj + Xi+1 + Sn−i−1

(
ri + Xi+1

m + i + 1

)
=

i∑
j=1

xj +
ri

m + i
+ (n − i − 1)

ri + ri
m+i

m + i + 1

=
i∑

j=1

xj +
ri

m + i
+ (n − i − 1)

ri (1 + 1
m+i )

m + i + 1

=
i∑

j=1

xj +
ri

m + i
+ (n − i − 1)

ri
m + i

= Zi



Tail Inequalities: Doob Martingales

Let X1, . . . ,Xn be sequence of random variables.

Random variable Y :

• Y = f (X1,X2, . . . ,Xn) is a function of X1,X2, . . . ,Xn;

• E[|Y |] <∞.

Let Zi = E[Y |X1, . . . ,Xi ], i = 0, 1, . . . , n.

Z0,Z1, . . . ,Zn is martingale with respect to X1, . . . ,Xn.

If we can use Azuma-Hoeffding inequality:

Pr(|Zn − Z0| ≥ λ) ≤ .....

then we have,

Pr(|Y − E[Y ]| ≥ λ) ≤ ......

We need a bound on |Zi − Zi−1|.



Example: Pattern Matching

A = (a1, a2, . . . , an) string of characters, each chosen
independently and uniformly at random from Σ, with m = |Σ|.

pattern: B = (b1, . . . , bk) fixed string, bi ∈ Σ.

F= number occurrences of B in random string S .

E[F ] = (n − k + 1)

(
1

m

)k

.

Can we bound the deviation of F from its expectation?



F= number occurrences of B in random string A.

Z0 = E[F ] and Zn = F .

Zi = E[F |a1, . . . , ai ], for i = 1, . . . , n.

Z0,Z1, . . . ,Zn is a Doob martingale.

Each character in A can participate in no more than k occurrences
of B:

|Zi − Zi+1| ≤ k .

Azuma-Hoeffding inequality (version 1):

Pr(|F − E[F ]| ≥ λ) ≤ 2e−λ
2/(2nk2) .



McDiarmid Bound

In general it is hard to prove a bound on |Zi − Zi−1|. This theorem
gives a general condition:

Theorem

Assume that f (X1,X2, . . . ,Xn) satisfies, for all 1 ≤ i ≤ n,

|f (x1, . . . , , xi , . . . , xn)− f (x1, . . . , , yi , . . . , xn)| ≤ ci .

and X1, . . . ,Xn are independent, then

Pr(|f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)]| ≥ λ) ≤ 2e−2λ2/(
∑n

k=1 c
2
k ) .

[Changing the value of Xi changes the value of the function by at
most ci .]



Proof

Define a Doob martingale Z0,Z1, . . . ,Zn:

• Z0 = E[f (X1, . . . ,Xn)] = E[f (X̄ )]

• Zi = E[f (X0, . . . ,Xn) | X1, . . . ,Xi ] = E[f (Xi , . . . ,Xn) | X i ]

• Zn = f (X1, . . . ,Xn) = f (X̄ )

We want to prove that this martingale satisfies the conditions of

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . , be a martingale with respect to X0,X1,X2, . . . ,
such that

Bk ≤ Zk − Zk−1 ≤ Bk + ck ,

for some constants ck and for some random variables Bk that may
be functions of X0,X1, . . . ,Xk−1. Then, for all t ≥ 0 and any
λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k ) .



Lemma

If X1, . . . ,Xn are independent and

|f (x1, . . . , , xi , . . . , xn)− f (x1, . . . , , yi , . . . , xn)| ≤ ci .

then for some random variable Bk ,

Bk ≤ Zk − Zk−1 ≤ Bk + ck ,

Zk − Zk−1 = E[f (X̄ ) | X k ]− E[f (X̄ ) | X k−1] .

Hence Zk − Zk−1 is bounded above by

sup
x

E[f (X̄ ) | X k−1,Xk = x ]− E[f (X̄ ) | X k−1]

and bounded below by

inf
y

E[f (X̄ ) | X k−1,Xk = y ]− E[f (X̄ ) | X k−1] .

Thus, we need to show

sup
x

E[f (X̄ ) | X k−1,Xk = x ]− inf
y

E[f (X̄ ) | X k−1,Xk = y ] ≤ c ,



Zk − Zk−1 = sup
x,y

E[f (X̄ ,Xk = x)− f (X̄ ,Xk = y) | X k−1].

Because the Xi are independent, the values for Xk+1, . . . ,Xn do not depend on
the values of X1, . . . ,Xk .

sup
x,y

E[f (X̄ , x)− f (X̄ , y) | X1 = x1, . . . ,Xk−1 = xk−1]

= sup
x,y

∑
xk+1,...,xn

Pr
(
(Xk+1 = xk+1) ∩ . . . ∩ (Xn = xn)

)
·

(
f (x[1,k−1], x , x[k+1,n] − f (x[1,k−1], y , x[k+1,n])

But (
f (x[1,k−1], x , x[k+1,n] − f (x[1,k−1], y , x[k+1,n]) ≤ ck

and therefore
E[f (X̄ , x)− f (X̄ , y) | X k−1] ≤ ck



Application: Balls and Bins

We are throwing m balls independently and uniformly at random
into n bins.
Let Xi = the bin that the ith ball falls into.
Let F be the number of empty bins after the m balls are thrown.

E[F ] = n

(
1− 1

n

)m

,

The sequence Zi = E[F | X1, . . . ,Xi ] is a Doob martingale.
F = f (X1,X2, . . . ,Xm) satisfies the Lipschitz condition with bound
1, and the Xi ’s are independent. We therefore obtain

Pr(|F − E[F ]| ≥ ε) ≤ 2e−2ε2/m



Example: Polya’s Urn

• Start with m balls, r red, m − r blue.
• Repeat n times:

1 Pick a ball uniformly at random, check its color and return it
to the urn.

2 If red, add a new red ball, else add a new blue ball.

Let Xi = 1 if we add a red ball at step i , else Xi = 0
Sn
(
r
m

)
=
∑n

i=1 Xi = f (X1, . . . ,Xn) satisfies the Lipschitz
condition with bound 1, and the Xi ’s are independent.

E[Sn( r
m )] = n r

m .

Zi = E[Sn| X1 = x1, . . . ,Xi = xi ] is a Doob martingale.

Pr(|Sn − n
r

m
| ≥ ε) ≤ 2e−2ε2/m



Application: Chromatic Number

Given a random graph G in Gn,p, the chromatic number χ(G ) is
the minimum number of colors required to color all vertices of the
graph so that no adjacent vertices have the same color.
We use the vertex exposure martingale defined below:
Let Gi be the random subgraph of G induced by the set of vertices
1, . . . , i , let Z0 = E[χ(G )], and let

Zi = E[χ(G ) | G1, . . . ,Gi ] .

Since a vertex uses no more than one new color, again we have
that the gap between Zi and Zi−1 is at most 1.
We conclude

Pr(|χ(G )− E[χ(G )]| ≥ λ
√
n) ≤ 2e−2λ2 .

This result holds even without knowing E[χ(G )].


