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Martingales

A sequence of random variables Zy, Z1, ... is a martingale with
respect to the sequence Xg, X1, ... if for all n > 0 the following
hold:

® Z, is a function of Xp, X1,..., X;;

® E[|Z,]] < o

9 E[Zn+1‘X07X1, Ce. ,Xn] = Zn;

Definition
A sequence of random variables 7y, 73, ... is a martingale when it
is a martingale with respect to itself, that is

0 E[|Z,]] < oo

® E[Z, 11|20, 4, ..., 2] = Zp;



Martingale Stopping Theorem

Theorem

If Zy, Z1, ... is a martingale with respect to X1, Xo,... and if T is
a stopping time for X1, Xo, ... then (if T is finite),

E[Z7] = E[Z]

whenever one of the following holds:
@ there is a constant c such that, for all i, |Z;| < c;
® T is bounded;

® E[T] < oo, and there is a constant ¢ such that
EUZ,'Jrl = Z,‘HX;[, o ,X,'] < cC.



Compound Stochastic Process

Examples:
@ Two stages game:

@ roll one die; let X be the outcome;
@® roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?

® A couple expects to have X children, X ~ G(p). They expect
each of the children to have a number of children distributed
G(r).
What is their expected number of grandchildren?



Wald's Equation

Theorem

Let X1, X5, ... be nonnegative, independent, identically distributed
random variables with distribution X. Let T be a stopping time for
this sequence. If T and X have bounded expectations, then
T
>_Xi
1

E = E[T]E[X] .

Note that T is not independent of X1, X5, ....

Corollary of the martingale stopping theorem.



Proof

For i > 1, let Z; = Y., (X; — E[X]).

The sequence 71, Zo, ... is a martingale with respect to Xi, Xo, .. ..

@® Z is determined by Xi,.... X
@ E[|Z[] = E[| 22;-1(X; — E[XDI] =< 2iE[|X]]
© E[Ziy1— Zi | Xo, X1,..., Xi] = E[Xj41 — E[X]] =0

E[Z1] =0, E[T] < o0, and

E[lZi1— Zil | X1, Xi] = E[|Xi11 — E[X]|] < 2E[X] .

We can apply the martingale stopping theorem to compute

E[Zr] = E[z] =0 .



We can apply the martingale stopping theorem to compute

E[Z7] = E[Z] =0 .

=E

o
Il

E[Z7] =E

J

.
(X — E[X])
=1

,
> X — TE[X]
j=1

.
= E ZXJ} —E[T]-E[X] =0,

Jj=1




Examples

Two stages game:
@ roll one die; let X be the outcome;

@® roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?

Y; = outcome of ith die in second stage.

X

PIRG

i=1

E[Z]=E

X is a stopping time for Y1, Yo, . ...

By Wald's equation:

(7] = EIX]E[Y)] = (;) .



Examples

A couple expect to have X children, X ~ G(p). They expect each
of their children to have a number of children distributed G(r).
What is their expected number of grandchildren?

11
p r



Example: a k-run

We flip a coin with probability p for head, g = (1 — p) for tail,
until we get a consecutive sequence of k heads. What's the
expected number of times we flip the coin?

® A switch is a head followed by a tail.

® A segment is a sequence of flips till the first switch or
consecutive sequence of k heads.

® |et X; be the number of flips in the i segment.

® |let T be the first i with k heads.

® Expected number of flips till (including) the first head -
ijlquflp-

® Expected number of following flips till a switch before k — 2
flips - > jp/ g

k—2
EX] =Y jd o+ > jpf g+ (k—1)p?)
=1

jz1



® |et X; be the number of flips in the / segment.

EXi] =) Jjd~ p+ZJp’ g+ (k—1)p*—2

j>1

® | et T be the first i/ with k heads.

® The probability that a segment ends with k heads is p
(k — 1 heads following the first head).

k—1
E[T] = p~ Y

® The expected number of coin flips is EX]E[T] < (£ + %)#



Hoeffding's Bound

Theorem

Let Xi,..., X, be independent random variables with E[X;| = p,;
and Pr(B; < X; < Bi + ¢;) = 1, then

pr< )

n n
Z Xi — Z i
i=1 i=1

o 2¢2
> e) <2e T

Do we need independence?



Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Zy, 71, ..., Z, be a martingale (with respect to Xi, X5, ...)
such that |Z, — Zx_1| < ck. Then, for all t > 0 and any \ > 0,

Pr(|Z: — Zo| > A) < 2e™/C@Xha1 )

The following corollary is often easier to apply.

Corollary

Let Xy, X1, ... be a martingale such that for all k > 1,
| Xk — Xi—1| < c .
Then for all t > 1 and \ > 0,

Pr(|X: — Xo| > Aev/t) < 2e V72 .



Example

Assume that you play a sequence of n fair games, where the bet
b; < B in game i depends on the outcome of previous games.

Let Z, be the accumulated gain/loss after the n-th game.

We know that E[Z,] = 0. We'll prove:

Pr(|Zy] > \) < 2e2X/nB?



Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let Zy, Z1, ..., be a martingale with respect to Xy, X1, Xo, ..
such that

o

By < Zy —Zk—1 < B+ ck

for some constants c; and for some random variables By that may
be functions of Xy, X1,...,X_1. Then, for any t > 0 and A > 0,

Pr(|Z: — Zo| > A) < 262/ (Char )



Proof
Let XK = Xo,.... X and Y; = Z — Zi_;.

Since E[Z; | XY = Zi_4,
E[Y; | X" ) =E[Z—-Z_1 | XY]=0.

Since Pr(B; < Y; < B; + ¢ | X'1) =1, by Hoeffding's Lemma:

E[e['}Y,- | Xi—l] < e“‘32cf2/8 )

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that
Pr(X € [a,b]) = 1 and E[X] = 0. Then for every X\ > 0,

E[e/\X] < e)\2(a—b)2/8‘



Proof of the Lemma

Lemma

(Hoeffding's Lemma) Let X be a random variable such that
Pr(X € [a,b]) =1 and E[X] = 0. Then for every X\ > 0,

E[eAX] < N (a=b)?/8

Since f(x) = ™ is a convex function, for any o € (0,1) and
x € [a, b],

f(X) <af(a)+ (1 —a)f(b) .
Thus, for a = 2=% € (0,1),

b—x X —a
AX Aa Ab
<= Z_Zeth
e < - ae + h_ ae
Taking expectation, and using E[X] = 0, we have

E [e,\x} < ; b ha _ - b < N (b-a)?/8
— a — a



Proof of Azuma-Hoeffding Inequality

E {e/w,- ‘ Xi—l} < &Pe/8

Ex [eﬁz,LlY,} — Exos [EX” {eﬁz;m | XHH
Exn-1 [6527:_11 YiEX,, |:eBYn | Xn—l”

6’826’2’/8Exn—1 [6627;11 Y,}

IN

eﬁz ZI’”:l C12/8

IN

In the second inequality we use the fact that X"~! determines the
values of Y7,..., Y, 1



Y;=Z —Z 1 and E[eﬁ27z1 Yi] < e/3)2 Siict/8

P (Z:—Zo>\) = (ZY>/\> ﬁkl

< e Me B3t c?/8

For 5 = Zt 2 we get:

Pr(|Z: — Zo| > \) < 2~ 2/(Zher )

Theorem (Azuma-Hoeffding Inequality)

Let Zy, Z1,...,Z, be a martingale (with respect to X1, Xo,...)
such that |Z — Zx_1| < ck. Then, for all t > 0 and any \ > 0,

Pr(|Z: — Zo| > A) < 2e¥/C@h=1 <)



Example

Assume that you play a sequence of n fair games, where the bet b;
in game i depends on the outcome of previous games. Let

B = max; b;. The probability of winning or losing more than X\ is
bounded by

Pr(|Zy] > \) < 2e2X/7B?

Pr(|Z,| > ABv/n) < 2¢~2V

n
Pr1Zs > x> b7 | <2672
i=1




Application: Balls and Bins

We place m balls independently and uniformly at random into n
bins.

Let X; = 1 if bin / is empty after all the balls were placed,
otherwise X; = 0.

E[X)] = Pr(X; = 1) = (1 - 1>m

n

Let F = "7 ; X; be the number of empty bins after the m balls
are thrown. We know that

E[F]:n<1,17>m ,

but the events for different bins are not independent.

Formulating the process as a (Doob) martingale we'll get

Pr(|F — E[F]| > €) < 2¢72¢/m



Doob Martingale

Let X1, X5,..., X, be sequence of random variables. Let
Y = f(Xi,...,X,) be a random variable with E[| Y] < oco.

Fori=0,1,...,n, let

Zy = E[Y]=Expqlf(X,...,X]
Z, EX[i+1,n][Y‘X1 :Xl./XQ:XQ,...,X,':X,']
Zn = E[Y’Xl:Xl,XQZXQ,...7Xn:Xn]:f(Xl./...,Xn)

20,21, ..., 2Z, is martingale with respect to X1, X, ..., X,.



Proof
Y = f(X4,...,Xn), Zo = E[Y],
Zi = Exjig1alY[X1 = x1,. .., Xi = xi],
Z1,75....,Z, is a martingale iff
(1) E[|Zj] < o0, and
(2) EX[/+1,n] [Z;+1|X1 = X1y..- ,X,' = X,'] = Z,'.
(1) E[|Zil] = EJE[Y [ X, ..., Xi]] < E[E[|Y] | Xq,..., Xi]] =
E[|Y]] < o0,
Jensen's Inequality: If (x) is convex then f(E[X]) < E[f(X)].

(2) EX[i+l,n] [Z,'+1|X1, X2y ,X,']
Exi i1 X [EXGir2,m Y X1, oo Xiga] | xa, o, Xi]
= ExpsinlYlx,x,...,x] =2

Past: P = x1,...,x;. Future: F = Xjj0,..., X,
Exi1,FlZi+1| Pl = Ex,y FIEF[Y|P, Xi41]IP] = Ex(it1,m[YIP] = Zi



Simple Example
X; independent ~ U0, 1].

Y = (X, X)) = 30, X,

Zo = E[Y]=Expnf(X,...

Y

Zi = EX[i+1,n][Y|X17"'7Xi]

= ZXJ + E[ZX]
j=1 j=i

Z, = E[Y|x1,...,xn] =f(x1,..

ZXJ
. ij

X)) = E[Y_X] = n)2

n—/

Exi+1[Z;+1|X1,...,X,'] = EX:+1 ZX+ }Xl,...,X,'




Example: Polya’'s Urn

e Start with m balls, r red, m — r blue.
® Repeat n times:

@ Pick a ball uniformly at random, check its color and return it
to the urn.
@ If red, add a new red ball, else add a new blue ball.

Let X; = 1 if we add a red ball at step /, else X; =0

We want to estimate the number of new red balls among the n
new balls, starting with ratio r/m

r
m

Claim: E[S,(5)] = n—t.

On "average” the ratio doesn’t change:




Example: Polya’'s Urn

Start with M balls, R red, M — R blue. Repeat n times: pick a ball
uniformly at random. Return it to the urn. If red add a red ball,
else add a blue ball.

X; =1 if we add a red ball in step /, else X; = 0.

Sp(r/m) = ZX—le,..., n)

Claim: E[S,(5)] = n..

Proof: By induction on ¢t > 0, that E[S¢] = tr/m.
r+ St
m+t

E[Ses1 | Se] = Se +

E[St+1] = E[E[St+1 | Se]] = E{St s St}

m+t
r+tr/m r r(l4+t/m)

r r
=t — =t =L —(t+1)—
mjL m-+t m+m(1+t/m) (t+ )m



Example: Polya’'s Urn

X; =1 if added a red ball in step /, else X; =0,
Sa(+) = >r ., Xi, and E[Sa()] = n%
Let Z; = E[Sn‘ X1=x1,...,X; = X,'].

We verify that 73, ..., Z, is a martingale (which we already know,
since it's a Doob martingale.)

Let rj =r+ Zji':1 X

r+ Zjl':1 Xj

Zi = E[S)| Xi=x1,...,Xi=x]= ZXJJFE[S,, (— =5

)]

I
.f+2j:1xj ri
= E Xj + n—li_—g Xj + (n—1) -
m+ 1 m—



- .
,—rE+[Z,’-:1Xj
Z = E[S,| X1 = —xi] =S x o+ (n—
1 =X
1, Xi = xi] = i
j=1%i (n—1i)m

m—+i*

E[Z'
i 1‘X1
sy X
] [[n’X1,X2 X ]
S, ,'+1|X1 X
E[E[S Tyow-

i
x>
x;j + Xi
2 i+1+ Sn—i—1 (r,+X,+1
_ XI: m+i—|—1>
= Xj+ i
2 m+i+(n_,'_1)ri+mi"
_ i m-+i—+1
P
j=1 m+i+(”_"—1)ri(1+m1+')
: i m—i—i—l—i
Xj+ —
m+l+(n_l_1) .
m+i:Z'

, Xi = xi]



Tail Inequalities: Doob Martingales

Let Xi,..., X, be sequence of random variables.

Random variable Y:

® E[|Y]] < .
Let Z; = E[Y\Xl,...,X,-], i=0,1,...,n.
20,21, ...,2Z, is martingale with respect to Xy, ..., X,.

If we can use Azuma-Hoeffding inequality:

then we have,

Pr(JY —E[Y]| > \) < ......

We need a bound on |Z; — Z;_4].



Example: Pattern Matching

A= (a1,a,...,a,) string of characters, each chosen
independently and uniformly at random from ¥, with m = |Z|.

pattern: B = (by,..., by) fixed string, b; € .

F= number occurrences of B in random string S.

E[F] = (n— k +1) (;)k .

Can we bound the deviation of F from its expectation?



F= number occurrences of B in random string A.
Zo =E[F] and Z, = F.

Z; =E[Fla1,...,aj],fori=1,...,n.

20,21, ...,Z,is a Doob martingale.

Each character in A can participate in no more than k occurrences

of B:
\Zi — Zija| < k .

Azuma-Hoeffding inequality (version 1):

Pr(|F — E[F]| > \) < 2e~ /@),



McDiarmid Bound

In general it is hard to prove a bound on |Z; — Z;_1|. This theorem
gives a general condition:

Theorem
Assume that (X1, Xo, ..., X,) satisfies, for all 1 < i < n,

[F(X1y ey XiyeoosXn) — F(X1ye ooy s ViyeooysXn)| < G
and Xi,...,X, are independent, then

Pr(|f(Xe,. .., Xn) — E[f(X1,..., Xp)]| = A) < 2e~ 2N/ (Eka )

[Changing the value of X; changes the value of the function by at
most ¢;.]



Proof

Define a Doob martingale 7y, 71, ..., Zy:
* Zp = E[f(X1,..., Xa)] = E[f(X)]
® Z: = E[f(Xo,..., Xn) | X1,...,Xi] = E[f(X,..., %) | X]
® Z,=f(X1,...,X,) = f(X)

We want to prove that this martingale satisfies the conditions of

Theorem (Azuma-Hoeffding Inequality)

Let Zy, Z1, ..., be a martingale with respect to Xy, X1, Xo, ...,
such that
Bk < Zk — Zk—1 < Bx +ck

for some constants c, and for some random variables B that may
be functions of Xo, X1,...,Xx_1. Then, for all t > 0 and any
A >0,

Pr(|Z: — Zo| > A) < 262/ (Char )



Lemma

If X1, ..., X, are independent and

[F(X1y ey Xiy ooy Xn) — F(X1ye ey Viyee s Xn)| < 6

then for some random variable By,

By < Zy —Zk—1 < B+ ck

Zi— Zk—1 = E[F(X) | XK —E[f(X) | Xk1] .
Hence Z, — Z;_1 is bounded above by
sup E[f(X) | X1, Xi = x] — E[f(X) | X* ']

and bounded below by
inf E[F(X) | X¥~1, X, = y] — E[F(X) | X*7] .
y



Zi—Ziker = supE[f(X, Xk =x) — (X, Xe = y) | X*1].

X,y
Because the X; are independent, the values for X;.1,..., X, do not depend on
the values of Xi, ..., Xk.

sup E[f()_(,X) - f(;(y) | X1 = X1y .,Xk,1 = kal]
Xy

= sup Z Pr((XkH =Xkt1) N...N(Xy = x,,)) .

X,
Y Xk415++>Xn

(f(X[l,k—l]axv X[k+1,n — f(X[l,kfl]a)@ X[k+1,n])
But
(FOx k=195 X Xk 1,m] — F (X k=105 Y Xkr1,]) < C

and therefore ~ _
E[f(X,x) — f(X,y) | X* ] <



Application: Balls and Bins

We are throwing m balls independently and uniformly at random
into n bins.

Let X; = the bin that the /th ball falls into.

Let F be the number of empty bins after the m balls are thrown.

E[F]:n<1—rl7>m ,

The sequence Z; = E[F | Xi,...,Xj] is a Doob martingale.
F = f(X1, Xa,..., Xy,) satisfies the Lipschitz condition with bound
1, and the X;'s are independent. We therefore obtain

Pr(|F — E[F]| > €) < 2¢72¢/m



Example: Polya’'s Urn

e Start with m balls, r red, m — r blue.
® Repeat n times:

@ Pick a ball uniformly at random, check its color and return it

to the urn.
@® If red, add a new red ball, else add a new blue ball.

Let X; = 1 if we add a red ball at step /, else X; =0
Sn (L) =511 X;=f(Xt,...,X,) satisfies the Lipschitz
condition with bound 1, and the X;'s are independent.

E[Sh(5)] = nt.
Z; = E[S,| X1 = x1,..., X; = x;| is a Doob martingale.

Pr(|Sp — n—| > ¢) < 2e72/m
m



Application: Chromatic Number

Given a random graph G in G, , the chromatic number x(G) is
the minimum number of colors required to color all vertices of the
graph so that no adjacent vertices have the same color.

We use the vertex exposure martingale defined below:

Let G; be the random subgraph of G induced by the set of vertices
1,...,0, let Zy = E[x(G)], and let

Zi =EX(G) | G1,....Gi] .

Since a vertex uses no more than one new color, again we have
that the gap between Z; and Z;_; is at most 1.
We conclude

Pr(Ix(G) — E[x(G)]| = AV/n) < 2e72X

This result holds even without knowing E[x(G)].



