
CS155/254: Probabilistic Methods in
Computer Science

Chapter 14.1: Sample Complexity - Statistical Learning Theory

1 / 1

Statistical	Learning	–
Learning	From	Examples

• We	want	to	estimate	the	working	temperature	range	of	an	
iPhone.
– We	could	study	the	physics	and	chemistry	that	affect	the	

performance	of	the	phone	– too	hard
– We	could	sample	temperatures	in	[-100C,+100C]	and	check	if	

the	iPhone	works	in	each	of	these	temperatures
– We	could	sample	users’	iPhones	for	failures/temperature

• How	many	samples	do	we	need?
• How	good	is	the	result?

-100C +100Ca b

2 / 1

Learning an Interval From Examples

• Our domain is [A,B] ⊂ (−∞,+∞). There is an unknown
distribution D on [A,B]

• There is an unknown classification of the domain to an
interval of points in class In, the rest are in class Out.

• We get n random training (labeled) examples from the
distribution D.

• We choose a rule r = [a, b] based on the examples.

• We use this rule to decide on an unlabeled point drawn from
D.

• Let r∗ = [c, d] be the correct rule.

• Let ∆(r , r∗) = ([a, b]− [c , d]) ∪ ([c , d]− [a, b])

• We are wrong only on examples in ∆(r , r∗).

3 / 1

What’s the probability that we are wrong?

• If we select r , we are wrong only on examples in ∆(r , r∗).

• The probability that we are wrong is Pr(∆(r , r∗)).

• If Prob(∆(r , r∗)) ≤ ε we don’t care.

• We bound Prob(select r such that Pr(∆(r , r∗) ≥ ε)) as a
function of the size of the training set.

Two probabilities:

1 ε - the probability that our rule gives a wrong answer.

2 δ - the probability that are sample is sufficiently good to
generate such a rule.

4 / 1

Learning	
 an	
 Interval	

•  If	
 the	
 classifica2on	
 error	
 is	
 ≥	
 ε	
 then	
 the	
 sample	

missed	
 at	
 least	
 one	
 of	
 the	
 the	
 intervals	
 [a,a’]	

or	
 [b’,b]	
 each	
 of	
 probability	
 ≥	
 ε/2	

A	
 B	
 a	
 b	

x	
 y	

ε/2	

a’	

Each	
 sample	
 excludes	
 many	
 possible	
 intervals.	

The	
 union	
 bound	
 sums	
 over	
 overlapping	
 hypothesis.	

Need	
 beIer	
 characteriza2on	
 of	
 concept's	
 complexity!	

	

ε/2	
 	

b’	

5 / 1

Theorem

There is a learning algorithm that given a sample from D of size
m = 2

ε ln 2
δ , with probability 1− δ, returns a classification rule

(interval) [x , y] that is correct with probability 1− ε.

Proof.

Algorithm: Choose the smallest interval [x , y] that includes all the
”In” sample points.

• Clearly a ≤ x < y ≤ b, and the algorithm can only err in
classifying ”In” points as ”Out” points.

• Fix a < a′ and b′ < b such that Pr([a, a′]) = ε/2 and
Pr([b, b′]) = ε/2.

• If the probability of error when using the classification [x , y] is
≥ ε then either a′ ≤ x or y ≤ b′ or both.

• The probability that the sample of size m = 2
ε ln 2

δ did not
intersect with one of these intervals is bounded by

2(1− ε

2
)m ≤ e−

εm
2
+ln 2 = e−

ε
2
2
ε
ln 2

δ
+ln 2 = δ

6 / 1

Learning a Binary Classifier

• An unknown probability distribution D on a domain U
• An unknown correct classification – a partition c of U to In

and Out sets
• Input:

• Concept class C – a collection of possible classification rules
(partitions of U).

• A training set {(xi , c(xi)) | i = 1, . . . ,m}, where x1, . . . , xm are
sampled from D.

• Goal: With probability 1− δ the algorithm generates a good
classifier.

• A classifier is good if the probability that it errs on an item
generated from D is ≤ opt(C) + ε, where opt(C) is the error
probability of the best classifier in C.

• Realizable case: c ∈ C, Opt(C) = 0.

• Unrealizable case: c 6∈ C, Opt(C) > 0.

7 / 1

Learning	a	Binary	Classifier	
•  Out	and	In	items,	and	a	concept	class	C	of	
possible	classifica;on	rules	

8 / 1

When does the sample specify a good rule?
The realizable case

• The realizable case - the correct classification c ∈ C.

• For any h ∈ C let ∆(c , h) be the set of items on which the
two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}
• Algorithm: choose h∗ ∈ C that agrees with all the training set

(there must be at least one).

• If the sample (training set) intersects every set in

{∆(c , h) | Pr(∆(c , h)) ≥ ε},

then
Pr(∆(c , h∗)) ≤ ε.

9 / 1

Learning	a	Binary	Classifier	
•  Red	and	blue	items,	possible	classifica9on	
rules,	and	the	sample	items	

10 / 1

When does the sample identify a good rule?
The unrealizable (agnostic) case

• The unrealizable case - c may not be in C.
• For any h ∈ C, let ∆(c, h) be the set of items on which the

two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}
• For the training set {(xi , c(xi)) | i = 1, . . . ,m}, let

P̃r(∆(c , h)) =
1

m

m∑
i=1

1h(xi)6=c(xi)

• Algorithm: choose h∗ = arg minh∈C P̃r(∆(c , h)).
• If for every set ∆(c , h),

|Pr(∆(c, h))− P̃r(∆(c , h))| ≤ ε,

then
Pr(∆(c , h∗)) ≤ opt(C) + 2ε.

where opt(C) is the error probability of the best classifier in C.
11 / 1

If for every set ∆(c, h),

|Pr(∆(c , h))− P̃r(∆(c , h))| ≤ ε,

then
Pr(∆(c , h∗)) ≤ opt(C) + 2ε.

where opt(C) is the error probability of the best classifier in C.
Let h̄ be the best classifier in C. Since the algorithm chose h∗,

P̃r(∆(c , h∗)) ≤ P̃r(∆(c , h̄)).

Thus,

Pr(∆(c , h∗))− opt(C) ≤ P̃r(∆(c , h∗))− opt(C) + ε

≤ P̃r(∆(c , h̄))− opt(C) + ε ≤ 2ε

12 / 1

Detection vs. Estimation
• Input:

• Concept class C – a collection of possible classification rules
(partitions of U).

• A training set {(xi , c(xi)) | i = 1, . . . ,m}, where x1, . . . , xm are
sampled from D.

• For any h ∈ C, let ∆(c , h) be the set of items on which the
two classifiers differ: ∆(c , h) = {x ∈ U | h(x) 6= c(x)}
• For the realizable case we need a training set (sample) that

with probability 1− δ intersects every set in

{∆(c , h) | Pr(∆(c , h)) ≥ ε} (ε-net)

• For the unrealizable case we need a training set that with
probability 1− δ estimates, within additive error ε, every set in

∆(c , h) = {x ∈ U | h(x) 6= c(x)} (ε-sample).

13 / 1

Uniform Convergence Sets

Given a collection R of sets in a universe X , under what conditions
a finite sample N from an arbitrary distribution D over X , satisfies
with probability 1− δ,

1

∀r ∈ R, Pr
D

(r) ≥ ε ⇒ r ∩ N 6= ∅ (ε-net)

2 for any r ∈ R,∣∣∣∣Pr
D

(r)− |N ∩ r |
|N|

∣∣∣∣ ≤ ε (ε-sample)

14 / 1

Learnability - Uniform Convergence

Theorem

In the realizable case, any concept class C can be learned with
m = 1

ε (ln |C|+ ln 1
δ) samples.

Proof.

We need a sample that intersects every set in the family of sets

{∆(c , c ′) | Pr(∆(c , c ′)) ≥ ε}.

There are at most |C| such sets, and the probability that a sample
is chosen inside a set is ≥ ε.
The probability that m random samples did not intersect with at
least one of the sets is bounded by

|C|(1− ε)m ≤ |C|e−εm ≤ |C|e−(ln |C|+ln 1
δ
) ≤ δ.

15 / 1

How	
 Good	
 is	
 this	
 Bound?	

•  Assume	
 that	
 we	
 want	
 to	
 es3mate	
 the	
 working	

temperature	
 range	
 of	
 an	
 iPhone.	

•  We	
 sample	
 temperatures	
 in	
 [-­‐100C,+100C]	

and	
 check	
 if	
 the	
 iPhone	
 works	
 in	
 each	
 of	
 these	

temperatures.	

-­‐100C	
 +100C	
 a	
 b	

16 / 1

Learning an Interval

• A distribution D is defined on universe that is an interval
[A,B].

• The true classification rule is defined by a sub-interval
[a, b] ⊆ [A,B].

• The concept class C is the collection of all intervals,

C = {[c , d] | [c , d] ⊆ [A,B]}

Theorem

There is a learning algorithm that given a sample from D of size
m = 2

ε ln 2
δ , with probability 1− δ, returns a classification rule

(interval) [x , y] that is correct with probability 1− ε.

Note that the sample size is independent of the size of the concept
class |C|, which is infinite.

17 / 1

• The union bound is far too loose for our applications. It sums
over overlapping hypothesis.

• Each sample excludes many possible intervals.

• Need better characterization of concept’s complexity!

18 / 1

Probably Approximately Correct Learning
(PAC Learning)

• The goal is to learn a concept (hypothesis) from a pre-defined
concept class. (An interval, a rectangle, a k-CNF boolean
formula, etc.)

• There is an unknown distribution D on input instances.

• Correctness of the algorithm is measured with respect to the
distribution D.

• The goal: a polynomial time (and number of samples)
algorithm that with probability 1− δ computes an hypothesis
of the target concept that is correct (on each instance) with
probability 1− ε.

19 / 1

Formal Definition

• We have a unit cost function Oracle(c ,D) that produces a
pair (x , c(x)), where x is distributed according to D, and c(x)
is the value of the concept c at x . Successive calls are
independent.
• A concept class C over input set X is PAC learnable if there is

an algorithm L with the following properties: For every
concept c ∈ C, every distribution D on X , and every
0 ≤ ε, δ ≤ 1/2,
• Given a function Oracle(c ,D), ε and δ, with probability 1− δ

the algorithm output an hypothesis h ∈ C such that
PrD(h(x) 6= c(x)) ≤ ε.

• The concept class C is efficiently PAC learnable if the algorithm
runs in time polynomial in the size of the problem,1/ε and 1/δ.

————
So far we showed that the concept class ”intervals on the line” is
efficiently PAC learnable.

20 / 1

Learning Boolean Conjunctions

• A Boolean literal is either x or x̄ .

• A conjunction is xi ∧ xj ∧ x̄k

• C = is the set of conjunctions of up to 2n literals.

• The input space is {0, 1}n

• c ∈ C is the correct formula.

Theorem

The class of conjunctions of Boolean literals is efficiently PAC
learnable.

21 / 1

Proof
• Start with the hypothesis h = x1 ∧ x̄1 ∧ . . . xn ∧ x̄n.
• Ignore negative examples generated by Oracle(c ,D).
• For a positive example (a1, . . . , an), if ai = 1 remove x̄i ,

otherwise remove xi from h.

Lemma

At any step of the algorithm the current hypothesis never errs on
negative example. It may err on positive examples by not removing
enough literals from h.

Proof.

Initially the hypothesis has no satisfying assignment. It has a
satisfying assignment only when no literal and its complement are
left in the hypothesis. A literal is removed when it contradicts a
positive example and thus cannot be in c . Literals of c are never
removed. A negative example must contradict a literal in c , thus is
not satisfied by h.

22 / 1

Analysis

• The learned hypothesis h can only err by rejecting a positive
examples. (it rejects an input unless it had a similar positive
example in the training set.)

• If h errs on a positive example then in has a literal that is not
in c.

• Let z be a literal in h and not c. Let

p(z) = Pra∼D(c(a) = 1 and z = 0 in a).

• A literal z is“bad” If p(z) > ε
2n .

• Let m ≥ 2n
ε ln(2n) + ln 1

δ . The probability that after m samples
there is any bad literal in the hypothesis is bounded by

2n(1− ε

2n
)m ≤ δ.

23 / 1

Two fundamental questions:

• What concept classes are PAC-learnable with a given number
of training (random) examples?

• What concept class are efficiently learnable (in polynomial
time)?

A complete (and beautiful) characterization for the first question,
not very satisfying answer for the second one.

Some Examples:

• Efficiently PAC learnable: Interval in R, rectangular in R2,
disjunction of up to n variables, 3-CNF formula,...

• PAC learnable, but not in polynomial time (unless P = NP):
DNF formula, finite automata, ...

• Not PAC learnable: Convex body in R2,
{sin(hx) | 0 ≤ h ≤ π} ,...

24 / 1

