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Learning a Binary Classifier (PAC Learning)

• An unknown probability distribution D on a domain U
• An unknown correct classification – a partition c of U to In

and Out sets
• Input:

• Concept class C – a collection of possible classification rules
(partitions of U).

• A training set {(xi , c(xi )) | i = 1, . . . ,m}, where x1, . . . , xm are
sampled from D.

• Goal: With probability 1− δ the algorithm generates a good
classifier.
• A classifier is good if the probability that it errs on an item
generated from D is ≤ opt(C) + ε, where opt(C) is the error
probability of the best classifier in C.
• Realizable case: c ∈ C, Opt(C) = 0.
• Unrealizable case: c 6∈ C, Opt(C) > 0.
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The fundamental learning questions:

• What concept classes are PAC-learnable? How large training
set is needed?
• What concept class are efficiently learnable (in polynomial
time)?

A complete (and beautiful) characterization for the first question,
not very satisfying answer for the second one.

Some Examples:
• Efficiently PAC learnable: Interval in R, rectangular in R2,

disjunction of up to n variables, 3-CNF formula,...
• PAC learnable, but not in polynomial time (unless P = NP):

DNF formula, finite automata, ...
• Not PAC learnable: Convex body in R2,
{sin(hx) | 0 ≤ h ≤ π} ,...
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The Weakness of Union Bound

Theorem
In the realizable case, any concept class C can be learned with
m = 1

ε (ln |C|+ ln 1
δ ) samples.

Learning an Interval:
• The true classification rule is defined by a sub-interval

[a, b] ⊆ [A,B]. The concept class C is the collection of all
intervals, C = {[c, d ] | [c, d ] ⊆ [A,B]}

Theorem
There is a learning algorithm that given a sample from D of size
m = 2

ε ln 2
δ , with probability 1− δ, returns a classification rule

(interval) [x , y ] that is correct with probability 1− ε.

This sample size bound is independent of the size of the concept
class |C|, which is infinite.
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Uniform Convergence for Learning Binary
Classifcation

• Given a concept class C, and a training set sampled from D,
{(xi , c(xi )) | i = 1, . . . ,m}.
• For any h ∈ C, let ∆(c, h) be the set of items on which the

two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}

• For the realizable case we need a training set (sample) that
with probability 1− δ intersects every set in

{∆(c, h) | Pr(∆(c, h)) ≥ ε} (ε-net)

• For the unrealizable case we need a training set that with
probability 1− δ estimates, within additive error ε, every set in

∆(c, h) = {x ∈ U | h(x) 6= c(x)} (ε-sample).

•
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Uniform Convergence Sets

Given a collection R of sets in a universe X , under what conditions
a finite sample N from an arbitrary distribution D over X , satisfies
with probability 1− δ,

1
∀r ∈ R, Pr

D
(r) ≥ ε⇒ r ∩ N 6= ∅ (ε-net)

2 for any r ∈ R,∣∣∣∣Pr
D

(r)− |N ∩ r |
|N|

∣∣∣∣ ≤ ε (ε-sample)

• Under what conditions on R can a finite sample achieve these
requirements?
• What sample size is needed?
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Vapnik–Chervonenkis (VC) Dimension 1968/1971
(X ,R) is called a "range space":
• X = finite or infinite set (the set of objects to learn)
• R is a family of subsets of X , R ⊆ 2X .

• In learning, R = {∆(c, h) | h ∈ C}, where C is the concept
class, and c is the correct classification.

• For a finite set S ⊆ X , s = |S|, define the projection of R on
S,

ΠR(S) = {r ∩ S | r ∈ R}.

• If |ΠR(S)| = 2s we say that R shatters S.
• The VC-dimension of (X ,R) is the maximum size of S that is
shattered by R. If there is no maximum, the VC-dimension is
∞.

Theorem
A range space has a finite ε-net (ε-sample) iff its VC-dimension is
finite.
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The	VC-Dimension	of	a	Collec2on	of	
Intervals	

C	=	collec2ons	of	intervals	in	[A,B]	–	can	sha>er	2	point		
but	not	3.	No	interval	includes	only	the	two	red	points	
	

The	VC-dimension	of	C	is	2	
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Collec&on	of	Half	Spaces	in	the	Plane	

C	–	all	half	space	par&&ons	in	the	plane.	Any	3	
points	can	be	sha:ered:	
	

•  Cannot	par&&on	the	red	from	the	blue	points	
•  The	VC-dimension	of	half	spaces	on	the	plane	is	3	
•  The	VC-dimension	of	half	spaces	in	d-dimension	

space	is	d+1	
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	Axis-parallel	rectangles	on	the	plane		
	

4	points	that	define	a	convex	hull	can	be	sha8ered.		
	
No	five	points	can	be	sha8ered	since	one	of	the	points	
must	be	in	the	convex	hull	of	the	other	four.		
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Convex	Bodies	in	the	Plane	

•  C	–	all	convex	bodies	on	the	plane		

Any	subset	of	the	point	can	be	included	in	a	convex	body.		
The	VC-dimension	of	C	is	∞	
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A Few Examples

• C = set of intervals on the line. Any two points can be
shattered, no three points can be shattered.
• C = set of linear half spaces in the plane. Any three points
can be shattered but no set of 4 points. If the 4 points define
a convex hull let one diagonal be 0 and the other diagonal be
1. If one point is in the convex hull of the other three, let the
interior point be 1 and the remaining 3 points be 0.
• C = set of axis-parallel rectangles on the plane. 4 points that
define a convex hull can be shattered. No five points can be
shattered since one of the points must be in the convex hull of
the other four.
• C = all convex sets in R2. Let S be a set of n points on a
boundary of a cycle. Any subset Y ⊂ S defines a convex set
that doesn’t include S \ Y .
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The Main Result
Theorem (A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K.
Warmuth - 1989)

Let C be a concept class with VC-dimension d then
1 C is PAC learnable in the realizable case with

m = O(d
ε

ln d
ε

+ 1
ε

ln 1
δ

) (ε-net)

samples.
2 C is PAC learnable in the unrealizable case with

m = O( d
ε2

ln d
ε

+ 1
ε2

ln 1
δ

) (ε-sample)

samples.

The sample size is not a function of the number of concepts, or
the size of the domain!
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Sauer’s Lemma

For a finite set S ⊆ X , s = |S|, define the projection of R on S,

ΠR(S) = {r ∩ S | r ∈ R}.

Theorem
Let (X ,R) be a range space with VC-dimension d, for any S ⊆ X,
such that |S| = n,

|ΠR(S)| ≤
d∑

i=0

(
n
i

)
.

For n = d, |ΠR(S)| ≤ 2d , and for n > d ≥ 2, |ΠR(S)| ≤ nd .

The projection of R on n > d elements grows polynomially in the
VC-dimension and does not depend on |R|.
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Proof
• By induction on d , and for a fixed d , by induction on n.
• True for d = 0 or n = 0, since ΠR(S) = {∅}.
• Assume that the claim holds for d ′ ≤ d − 1 and any n, and for
d and all |S ′| ≤ n − 1.
• Fix x ∈ S and let S ′ = S − {x}.

ΠR(S)| = |{r ∩ S | r ∈ R}
ΠR(S ′)| = |{r ∩ S ′ | r ∈ R}

|PiR(x)(S ′)| = |{r ∩ S ′ | r ∈ R and x 6∈ r and r ∪ {x} ∈ R}

• For r1 ∩ S 6= r2 ∩ S we have r1 ∩ S ′ = r2 ∩ S ′ iff r1 = r2 ∪ {x},
or r2 = r1 ∪ {x}. Thus,

|ΠR(S)| = |ΠR(S ′)|+ |ΠR(x)(S ′)|
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Fix x ∈ S and let S ′ = S − {x}.

|ΠR(S)| = |{r ∩ S | r ∈ R}|
|ΠR(S ′)| = |{r ∩ S ′ | r ∈ R}|

|ΠR(x)(S ′)| = |{r ∩ S ′ | r ∈ R and x 6∈ r and r ∪ {x} ∈ R}|

• The VC-dimension of (S,ΠR(S)) is no more than the
VC-dimension of (X ,R), which is d .
• The VC-dimension of the range space (S ′,ΠR(S ′)) is no more

than the VC-dimension of (S,ΠR(S)) and |S ′| = n − 1, thus
by the induction hypothesis

|ΠR(S ′)| ≤
d∑

i=0

(
n − 1
i

)
.
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Fix x ∈ S and let S ′ = S − {x}.

|ΠR(S)| = |{r ∩ S | r ∈ R}|
|ΠR(S ′)| = |{r ∩ S ′ | r ∈ R}|

|ΠR(x)(S ′)| = |{r ∩ S ′ | r ∈ R and x 6∈ r and r ∪ {x} ∈ R}|

• For each r ∈ ΠR(x)(S ′) the range set ΠS(R) has two sets: r
and r ∪ {x}. If B is shattered by (S ′,ΠR(x)(S ′)) then B ∪ {x}
is shattered by (X ,R), thus (S ′,ΠR(x)(S ′)) has VC-dimension
bounded by d − 1, and

|ΠR(x)(S ′)| ≤
d−1∑
i=0

(
n − 1
i

)
.
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|ΠR(S)| = |ΠR(S ′)|+ |ΠR(x)(S ′)|

|ΠR(S)| ≤
d∑

i=0

(
n − 1
i

)
+

d−1∑
i=0

(
n − 1
i

)

= 1 +
d∑

i=1

((n − 1
i

)
+
(
n − 1
i − 1

))
=

d∑
i=0

(
n
i

)
≤

d∑
i=0

ni

i! ≤ nd

[We use
(n−1

i−1
)

+
(n−1

i
)

= (n−1)!
(i−1)!(n−i−1)! ( 1

n−i + 1
i ) =

(n
i
)
]

The number of distinct concepts on n elements grows polynomially
in the VC-dimension!
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ε-net

Definition
Let (X ,R) be a range space, with a probability distribution D on
X . A set N ⊆ X is an ε-net for X with respect to D if

∀r ∈ R, Pr
D

(r) ≥ ε⇒ r ∩ N 6= ∅.

Theorem
Let (X ,R) be a range space with VC-dimension bounded by d.
With probability 1− δ, a random sample of size

m ≥ 8d
ε

ln 16d
ε

+ 4
ε

ln 4
δ

is an ε-net for (X ,R).
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When is a Random Sample an ε-net?

• Let (X ,R) be a range space with VC-dimension d . Let M be
m independent samples from X .
• Let E1 = {∃r ∈ R | Pr(r) ≥ ε and |r ∩M| = 0}. We want to

show that Pr(E1) ≤ δ.
• Choose a second sample T of m independent samples.
• Let
E2 = {∃r ∈ R | Pr(r) ≥ ε and |r∩M| = 0 and |r∩T | ≥ εm/2}

Lemma

Pr(E2) ≤ Pr(E1) ≤ 2Pr(E2)

20 / 58



Lemma

Pr(E2) ≤ Pr(E1) ≤ 2Pr(E2)

E1 = {∃r ∈ R | Pr(r) ≥ ε and |r ∩M| = 0}

E2 = {∃r ∈ R | Pr(r) ≥ ε and |r ∩M| = 0 and |r ∩ T | ≥ εm/2}
Pr(E2)
Pr(E1) = Pr(E2 | E1) ≥ Pr(|T ∩ r | ≥ εm/2) ≥ 1/2

[The probability that ∃r ∈ R.... is at least the probability for a
given r ∈ R.]

Since |T ∩ r | has a Binomial distribution B(m, ε),
Pr(|T ∩ r | < εm/2) ≤ e−εm/8 < 1/2 for m ≥ 8/ε.
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E2 = {∃r ∈ R | Pr(r) ≥ ε and |r ∩M| = 0 and |r ∩ T | ≥ εm/2}

E ′2 = {∃r ∈ R | |r ∩M| = 0 and |r ∩ T | ≥ εm/2}

Lemma

Pr(E1) ≤ 2Pr(E2) ≤ 2Pr(E ′2) ≤ 2(2m)d2−εm/2.

For a fixed r ∈ R and k = εm/2, let

Er = {|r∩M| = 0 and |r∩T | ≥ k} = {|M∩r | = 0 and |r∩(M∪T )| ≥ k}

Er = {|r ∩M| = 0 and |r ∩ T | ≥ k}

E ′2 = ∪r∈REr .
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E ′2 = {∃r ∈ R | |r ∩M| = 0 and |r ∩ T | ≥ εm/2}

For a fixed r ∈ R and k = εm/2 let
Er = {|r ∩M| = 0 and |r ∩ T | ≥ k}

E ′2 = ∪r∈REr .

Choose an arbitrary set Z of size 2m and divide it randomly to M
and T .

Pr(Er ) = Pr(|M ∩ r | = 0
∣∣ |r ∩ (M ∪ T )| ≥ k)Pr(|r ∩ (M ∪ T )| ≥ k)

≤ Pr(|M ∩ r | = 0
∣∣ |r ∩ (M ∪ T )| ≥ k) ≤

(2m−k
m
)(2m

m
)

= m(m − 1)....(m − k + 1)
2m(2m − 1)....(2m − k + 1) ≤ 2−εm/2
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The Main Idea: Switching Sample Space
We start with events defined on the distributions of samples from D that can
intersect any set r ∈ R.

E1 = {∃r ∈ R | Pr(r) ≥ ε and |r ∩M| = 0}

E2 = {∃r ∈ R | Pr(r) ≥ ε and |r ∩M| = 0 and |r ∩ T | ≥ εm/2}

E ′2 = {∃r ∈ R | |r ∩M| = 0 and |r ∩ T | ≥ εm/2}

Er = {|r ∩M| = 0 and |r ∩ T | ≥ k} = {|M ∩ r | = 0 and |r ∩ (M ∪ T )| ≥ k}

E ′2 = ∪r∈REr

Choosing a sample of 2n elements, Z = M ∪ T , and partition it randomly

Pr(Er ) = Pr(|M ∩ r | = 0
∣∣ |r ∩ (M ∪ T )| ≥ k)Pr(|r ∩ (M ∪ T )| ≥ k)

≤ Pr(|M ∩ r | = 0
∣∣ |r ∩ (M ∪ T )| ≥ k)

(|M ∩ r | = 0
∣∣ |r ∩ (M ∪ T )| ≥ k) is an event in the distribution of all

partitions of Z to M and T . Therefore,

Pr(E ′2) ≤
∑

r∈ΠR (Z) Pr(|M ∩ r | = 0
∣∣ |r ∩ (M ∪ T )| ≥ k)

We only need to consider sets in the projection of R on Z .
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Since |ΠR(Z )| ≤ (2m)d ,

Pr(E ′2) ≤ (2m)d2−εm/2.

Pr(E1) ≤ 2Pr(E ′2) ≤ 2(2m)d2−εm/2.

Theorem
Let (X ,R) be a range space with VC-dimension bounded by d.
With probability 1− δ, a random sample of size

m ≥ 8d
ε

ln 16d
ε

+ 4
ε

ln 4
δ

is an ε-net for (X ,R).

We need to show that (2m)d2−εm/2 ≤ δ. for m ≥ 8d
ε ln 16d

ε + 4
ε ln 1

δ .
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Arithmetic

We show that (2m)d2−εm/2 ≤ δ. for m ≥ 8d
ε ln 16d

ε + 4
ε ln 1

δ .
Equivalently, we require

εm/2 ≥ ln(1/δ) + d ln(2m).

Clearly εm/4 ≥ ln(1/δ), since m > 4
ε ln 1

δ .

We need to show that εm/4 ≥ d ln(2m).
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Lemma
If y ≥ x ln x > e, then 2y

ln y ≥ x .

Proof.
For y = x ln x we have ln y = ln x + ln ln x ≤ 2 ln x . Thus

2y
ln y ≥

2x ln x
2 ln x = x .

Differentiating f (y) = ln y
2y we find that f (y) is monotonically

decreasing when y ≥ x ln x ≥ e, and hence 2y
ln y is monotonically

increasing on the same interval, proving the lemma.

Let y = 2m ≥ 16d
ε ln 16d

ε and x = 16d
ε , we have

4m
ln(2m) ≥

16d
ε
,

so
εm
4 ≥ d ln(2m)

as required.
as required.
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Lower Bound on Sample Size

Theorem
A random sample of a range space with VC dimension d that with
probability at least 1− δ is an ε-net must have size Ω(d

ε ).

Consider a range space (X ,R), with X = {x1, . . . , xd}, and
R = 2X .

Define a probability distribution D:

Pr(x1) = 1− 4ε

Pr(x2) = Pr(x3) = · · · = Pr(xd ) = 4ε
d − 1

Let X ′ = {x2, . . . , xd}.
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Let X ′ = {x2, . . . , xd}.
Pr(x2) = Pr(x3) = · · · = Pr(xd ) = 4ε

d−1

Let S be a sample of m = (d−1)
16ε examples from the distribution D.

Let B be the event |S ∩ X ′| ≤ (d − 1)/2, then Pr(B) ≥ 1/2.

With probability ≥ 1/2, the sample does not hit a set of probability

d − 1
2

4ε
d − 1 = 2ε

Corollary
A range space has a finite ε-net iff its VC-dimension is finite.
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Back to Learning

• Let X be a set of items, D a distribution on X , and C a set of
concepts on X .
• ∆(c, c ′) = {c \ c ′ ∪ c ′ \ c | c ′ ∈ C}
• We take m samples and choose a concept c ′, while the correct
concept is c.
• If PrD({x ∈ X | c ′(x) 6= c(x)}) > ε then, Pr(∆(c, c ′)) ≥ ε,

and no sample was chosen in ∆(c, c ′)
• How many samples are needed so that with probability 1− δ

all sets ∆(c, c ′), c ′ ∈ C, with Pr(∆(c, c ′)) ≥ ε, are hit by the
sample?
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Theorem
The VC-dimension of (X , {∆(c, c ′) | c ′ ∈ C}) is the same as
(X , C).

Proof.
We show that
{c ′ ∩ S | c ′ ∈ C} → {((c ′ \ c)∪ (c \ c ′))∩ S | c ′ ∈ C} is a bijection.
Assume that c1 ∩ S 6= c2 ∩ S, then w.o.l.g. x ∈ (c1 \ c2) ∩ S.

x 6∈ c iff x ∈ ((c1 \ c) ∪ (c \ c1)) ∩ S and
x 6∈ ((c2 \ c) ∪ (c \ c2)) ∩ S.

x ∈ c iff x 6∈ ((c1 \ c)∪ (c \ c1))∩S and x ∈ ((c2 \ c)∪ (c \ c2))∩S

Thus, c1 ∩ S 6= c2 ∩ S iff
((c1 \ c) ∪ (c \ c1)) ∩ S 6= ((c2 \ c) ∪ (c \ c2)) ∩ S. The projection
on S in both range spaces has equal size.
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PAC Learning

Theorem
In the realizable case, a concept class C is PAC-learnable iff the
VC-dimension of the range space defined by C is finite.

Theorem
Let C be a concept class that defines a range space with VC
dimension d. For any 0 < δ, ε ≤ 1/2, there is an

m = O
(
d
ε

ln d
ε

+ 1
ε

ln 1
δ

)
such that C is PAC learnable with m samples.
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Unrealizable (Agnostic) Learning

• We are given a training set {(x1, c(x1)), . . . , (xm, c(xm))}, and
a concept class C
• No hypothesis in the concept class C is consistent with all the
training set (c 6∈ C).
• Relaxed goal: Let c be the correct concept. Find c ′ ∈ C such

that

Pr
D

(c ′(x) 6= c(x)) ≤ inf
h∈C

Pr
D

(h(x) 6= c(x)) + ε.

• An ε/2-sample of the range space (X ,∆(c, c ′)) gives enough
information to identify an hypothesis that is within ε of the
best hypothesis in the concept class.
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When does the sample identify the correct rule?
The unrealizable (agnostic) case

• The unrealizable case - c may not be in C.
• For any h ∈ C, let ∆(c, h) be the set of items on which the

two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}
• For the training set {(xi , c(xi )) | i = 1, . . . ,m}, let

P̃r(∆(c, h)) = 1
m

m∑
i=1

1h(xi )6=c(xi )

• Algorithm: choose h∗ = arg minh∈C P̃r(∆(c, h)).
• If for every set ∆(c, h),

|Pr(∆(c, h))− P̃r(∆(c, h))| ≤ ε,

then
Pr(∆(c, h∗)) ≤ opt(C) + 2ε.

where opt(C) is the error probability of the best classifier in C.
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If for every set ∆(c, h),

|Pr(∆(c, h))− P̃r(∆(c, h))| ≤ ε,

then
Pr(∆(c, h∗)) ≤ opt(C) + 2ε.

where opt(C) is the error probability of the best classifier in C.
Let h̄ be the best classifier in C. Since the algorithm chose h∗,

P̃r(∆(c, h∗)) ≤ P̃r(∆(c, h̄)).

Thus,

Pr(∆(c, h∗))− opt(C) ≤ P̃r(∆(c, h∗))− opt(C) + ε

≤ P̃r(∆(c, h̄))− opt(C) + ε ≤ 2ε
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ε-sample
Definition
An ε-sample for a range space (X ,R), with respect to a probability
distribution D defined on X , is a subset N ⊆ X such that, for any
r ∈ R, ∣∣∣∣Pr

D
(r)− |N ∩ r |

|N|

∣∣∣∣ ≤ ε .
Theorem
Let (X ,R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < ε, δ < 1/2, there is an

m = O
(
d
ε2

ln d
ε

+ 1
ε2

ln 1
δ

)
such that a random sample from D of size greater than or equal to
m is an ε-sample for X with with probability at least 1− δ.
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Proof of the ε-sample Bound:
Let N be a set of m independent samples from X according to D.
Let

E1 =
{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε

}
.

We want to show that Pr(E1) ≤ δ.

Choose another set T of m independent samples from X according
to D. Let

E2 =
{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε ∧
∣∣∣∣Pr(r)− |T ∩ r |

m

∣∣∣∣ ≤ ε/2}

Lemma

Pr(E2) ≤ Pr(E1) ≤ 2Pr(E2).
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Lemma
Pr(E2) ≤ Pr(E1) ≤ 2Pr(E2).

E1 =
{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε

}

E2 =
{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε ∧
∣∣∣∣ |T ∩ r |

m − Pr(r)
∣∣∣∣ ≤ ε/2}

For m ≥ 24
ε2 ,

Pr(E2)
Pr(E1) = Pr(E1 ∩ E2)

Pr(E1) = Pr(E2|E1) ≥ Pr(| |T ∩ r |
m − Pr(r)| ≤ ε/2)

≥ 1− 2e−ε2m/12 ≥ 1/2

[In bounding Pr(E2|E1) we use the fact that the probability that
∃r ∈ R is not smaller than the probability that the event holds for
a fixed r ] 38 / 58



Instead of bounding the probability of

E2 =
{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε ∧
∣∣∣∣ |T ∩ r |

m − Pr(r)
∣∣∣∣ ≤ ε/2}

we bound the probability of

E ′2 = {∃r ∈ R | ||r ∩ N| − |r ∩ T || ≥ ε

2m}.

By the triangle inequality (|A|+ |B| ≥ |A + B|):

||r ∩ N| − |r ∩ T ||+ ||r ∩ T | −mPr
D

(r)| ≥ ||r ∩ N| −mPr
D

(r)|.
or
||r ∩N|− |r ∩T || ≥ ||r ∩N|−mPr

D
(r)|− ||r ∩T |−mPr

D
(r)| ≥ ε

2m.

Since N and T are random samples, we can first choose a random
sample Z of 2m elements, and partition it randomly into two sets
of size m each. The event E ′2 is in the probability space of random
partitions of Z .

39 / 58



Lemma

Pr(E1) ≤ 2Pr(E2) ≤ 2Pr(E ′2) ≤ 2(2m)de−ε2m/8.

• Since N and T are random samples, we can first choose a
random sample of 2m elements Z = z1, . . . , z2m and then
partition it randomly into two sets of size m each.
• Since Z is a random sample, any partition that is independent
of the actual values of the elements generates two random
samples.
• We will use the following partition: for each pair of sampled
items z2i−1 and z2i , i = 1, . . . ,m, with probability 1/2
(independent of other choices) we place z2i−1 in T and z2i in
N, otherwise we place z2i−1 in N and z2i in T .
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For r ∈ R, let Er be the event

Er =
{
||r ∩ N| − |r ∩ T || ≥ ε

2m
}
.

We have E ′2 = {∃r ∈ R | ||r ∩ N| − |r ∩ T || ≥ ε
2m} =

⋃
r∈R

Er .

• If z2i−1, z2i ∈ r or z2i−1, z2i 6∈ r they don’t contribute to the
value of ||r ∩ N| − |r ∩ T ||.
• If just one of the pair z2i−1 and z2i is in r then their
contribution is +1 or −1 with equal probabilities.
• There are no more than m pairs that contribute +1 or −1
with equal probabilities. Applying the Chernoff bound we have

Pr(Er ) ≤ e−(εm/2)2/2m ≤ e−ε2m/8.

• Since the projection of X on T ∪ N has no more than (2m)d

distinct sets we have the bound.
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To complete the proof we show that for

m ≥ 32d
ε2

ln 64d
ε2

+ 16
ε2

ln 1
δ

we have
(2m)de−ε2m/8 ≤ δ.

Equivalently, we require

ε2m/8 ≥ ln(1/δ) + d ln(2m).

Clearly ε2m/16 ≥ ln(1/δ), since m > 16
ε2 ln 1

δ .

To show that ε2m/16 ≥ d ln(2m) we use:
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Lemma
If y ≥ x ln x > e, then 2y

ln y ≥ x .

Proof.
For y = x ln x we have ln y = ln x + ln ln x ≤ 2 ln x . Thus

2y
ln y ≥

2x ln x
2 ln x = x .

Differentiating f (y) = ln y
2y we find that f (y) is monotonically

decreasing when y ≥ x ln x ≥ e, and hence 2y
ln y is monotonically

increasing on the same interval, proving the lemma.

Let y = 2m ≥ 64d
ε2 ln 64d

ε2 and x = 64d
ε2 , we have 4m

ln(2m) ≥
64d
ε2 , so

ε2m
16 ≥ d ln(2m) as required.
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Application: Unrealizable (Agnostic) Learning

• We are given a training set {(x1, c(x1)), . . . , (xm, c(xm))}, and
a concept class C
• No hypothesis in the concept class C is consistent with all the
training set (c 6∈ C).
• Relaxed goal: Let c be the correct concept. Find c ′ ∈ C such

that

Pr
D

(c ′(x) 6= c(x)) ≤ inf
h∈C

Pr
D

(h(x) 6= c(x)) + ε.

• An ε/2-sample of the range space (X ,∆(c, c ′)) gives enough
information to identify an hypothesis that is within ε of the
best hypothesis in the concept class.
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ε-sample
Definition
An ε-sample for a range space (X ,R), with respect to a probability
distribution D defined on X , is a subset N ⊆ X such that, for any
r ∈ R, ∣∣∣∣Pr

D
(r)− |N ∩ r |

|N|

∣∣∣∣ ≤ ε .
Theorem
Let (X ,R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < ε, δ < 1/2, there is an

m = O
(
d
ε2

ln d
ε

+ 1
ε2

ln 1
δ

)
such that a random sample from D of size greater than or equal to
m is an ε-sample for X with with probability at least 1− δ.
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Uniform Convergence [Vapnik – Chervonenkis 1971]

Definition
A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mF (ε, δ) such that
• for any ε, δ > 0, m(ε, δ) <∞
• for any distribution D on Z , and a sample z1, . . . , zm of size
m = mF (ε, δ),

Pr(sup
f ∈F
| 1m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

Let fE (z) = 1z∈E then E[fE (z)] = Pr(E ).
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Application: Frequent Itemsets Mining (FIM)?
Frequent Itemsets Mining: classic data mining problem with many
applications
Settings:

Dataset D

bread, milk
bread
milk, eggs
bread, milk, apple
bread, milk, eggs

Each line is a transaction, made of items from an
alphabet I
An itemset is a subset of I. E.g., the itemset
{bread,milk}
The frequency fD(A) of A ⊆ I in D is the fraction of
transactions
of D that A is a subset of. E.g.,
fD({bread,milk}) = 3/5 = 0.6

Problem: Frequent Itemsets Mining (FIM)
Given θ ∈ [0, 1] find (i.e., mine) all itemsets A ⊆ I with

fD(A) ≥ θ
I.e., compute the set FI(D, θ) = {A ⊆ I : fD(A) ≥ θ}

There exist exact algorithms for FI mining (Apriori, FP-Growth,
. . . )
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How to make FI mining faster?

Exact algorithms for FI mining do not scale with |D| (no. of
transactions):

They scan D multiple times: painfully slow when accessing disk
or network

How to get faster? We could develop faster exact algorithms
(difficult) or. . .

. . . only mine random samples of D that fit in main memory

Trading off accuracy for speed: we get an approximation of
FI(D, θ) but we get it fast

Approximation is OK: FI mining is an exploratory task (the
choice of θ is also often quite arbitrary)

Key question: How much to sample to get an approximation of
given quality?
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How to define an approximation of the FIs?

For ε, δ ∈ (0, 1), a (ε, δ)-approximation to FI(D, θ) is a collection C
of itemsets s.t., with prob. ≥ 1− δ:

“Close” False Positives are allowed, but no False Negatives
This is the price to pay to get faster results: we lose accuracy

Still, C can act as set of candidate FIs to prune with fast scan of D

49 / 58



What do we really need?
We need a procedure that, given ε, δ, and D, tells us how large
should a sample S of D be so that

Pr(∃ itemset A : |fS(A)− fD(A)| > ε/2) < δ

Theorem: When the above inequality holds, then FI(S, θ − ε/2) is
an (ε, δ)-approximation

Proof (by picture):
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What can we get with a Union Bound?
For any itemset A, the number of transactions that include A is
distributed

|S|fS(A) ∼ Binomial(|S|, fD(A))

Applying Chernoff bound

Pr(|fS(A)− fD(A)| > ε/2) ≤ 2e−|S|ε2/12

We then apply the union bound over all the itemsets to obtain
uniform convergence
There are 2|I| itemsets, a priori. We need

2e−|S|ε2/12 ≤ δ/2|I|

Thus
|S| ≥ 12

ε2

(
|I|+ ln 2 + ln 1

δ

)
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Assume that we have a bound ` on the maximum transaction size.

There are
∑

i≤`
(|I|

i
)
≤ |I|` possible itemsets. We need

2e−|S|ε2/12 ≤ δ/|I|`

Thus,
|S| ≥ 12

ε2

(
` log |I|+ ln 2 + ln 1

δ

)

The sample size depends on log |I| which can still be very large.
E.g., all the products sold by Amazon, all the pages on the Web,

. . .

Can have a smaller sample size that depends on some
characteristic quantity of D
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How do we get a smaller sample size?
[R. and U. 2014, 2015]: Let’s use VC-dimension!
We define the task as an expectation estimation task:
• The domain is the dataset D (set of transactions)
• The family is F = {TA,A ⊆ 2I}, where
TA = {τ ∈ D : A ⊆ τ} is the set of the transactions of D
that contain A
• The distribution π is uniform over D: π(τ) = 1/|D|, for each
τ ∈ D

We sample transactions according to the uniform distribution,
hence we have:

Eπ[1TA ] =
∑
τ∈D

1TA(τ)π(τ) =
∑
τ∈D

1TA(τ) 1
|D|

= fD(A)

We then only need an efficient-to-compute upper bound to the
VC-dimension
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Bounding the VC-dimesion

Theorem: The VC-dimension is less or the maximum transaction
size `.

Proof:
• Let t > ` and assume it is possible to shatter a set T ⊆ D
with |T | = t.
• Then any τ ∈ T appears in at least 2t−1 ranges TA (there are

2t−1 subsets of T containing τ)
• Any τ only appears in the ranges TA such that A ⊆ τ . So it
appears in 2` − 1 ranges
• But 2` − 1 < 2t−1 so τ∗ can not appear in 2t−1 ranges
• Then T can not be shattered. We reach a contradiction and

the thesis is true

By the VC ε-sample theorem we need |S| ≥ O( 1
ε2

(
` log `+ ln 1

δ

)
)
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Better bound for the VC-dimension
Enters the d-index of a dataset D!

The d-index d of a dataset D is the maximum integer such that D
contains at least d different transactions of length at least d

Example: The following dataset has d-index 3

bread beer milk coffee
chips coke pasta
bread coke chips
milk coffee
pasta milk

It is similar but not equal to the h-index for published authors

It can be computed easily with a single scan of the dataset

Theorem: The VC-dimension is less or equal to the d-index d of D
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How do we prove the bound?
Theorem: The VC-dimension is less or equal to the d-index d of D
Proof:
• Let ` > d and assume it is possible to shatter a set T ⊆ D
with |T | = `.
• Then any τ ∈ T appears in at least 2`−1 ranges TA (there are
2`−1 subsets of T containing τ)
• But any τ only appears in the ranges TA such that A ⊆ τ . So

it appears in 2|τ | − 1 ranges
• From the definition of d , T must contain a transaction τ∗ of
length |τ∗| < `

• This implies 2|τ∗| − 1 < 2`−1, so τ∗ can not appear in 2`−1

ranges
• Then T can not be shattered. We reach a contradiction and
the thesis is true

This theorem allows us to use the VC ε-sample theorem
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What is the algorithm then?

d ← d-index of D
r ← 1

ε2

(
d + ln 1

δ

)
sample size
S ← ∅
for i ← 1, . . . , r do

τi ← random transaction from D, chosen uniformly
S ← S ∪ {τi}

end
Compute FI(S, θ − ε/2) using exact algorithm // Faster
algos make our approach faster!
Output FI(S, θ − ε/2)

Theorem: The output of the algorithm is a (ε, δ)-approximation
We just proved it!
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How does it perform in practice?
Very well!
Great speedup w.r.t. an exact algorithm mining the whole dataset

Gets better as D grows, because the sample size does not
depend on |D|
Sample is small: 105 transactions for ε = 0.01, δ = 0.1
The output always had the desired properties, not just with prob.
1− δ
Maximum error |fS(A)− fD(A)| much smaller than ε
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