
CS155/254: Probabilistic Methods in
Computer Science

Chapter 15: Pairwise Independent and Hashing

1 / 1



Pairwise Independence

Definition

1 A set of events E1,E2, . . .En is k-wise independent if for any subset
I ⊆ [1, n] with |I | ≤ k,

Pr

(⋂
i∈I

Ei

)
=

∏
i∈I

Pr(Ei ).

2 A set of random variables X1,X2, . . .Xn is k-wise independent if for any
subset I ⊆ [1, n] with |I | ≤ k, and any values xi , i ∈ I ,

Pr

(⋂
i∈I

Xi = xi

)
=

∏
i∈I

Pr(Xi = xi ).

If true for k = n the random variables are mutually independent.

2 / 1



Pairwise Independent

Definition

The random variables X1,X2, . . .Xn are said to be pairwise
independent if they are 2-wise independent. That is, for any pair
i , j and any values a, b,

Pr((Xi = a) ∩ (Xj = b)) = Pr(Xi = a) · Pr(Xj = b).

Application: We can construct m = 2b − 1 uniform pairwise
independent 0-1 random variable from b independent, uniform
random bits, X1, . . . ,Xb.
m = 2b − 1 uniform pairwise independent 0-1 random variable in a
sample space with 2 · 2b simple events.

3 / 1



Construction of Pairwise Independent Bits

We are given b independent, uniform random bits, X1, . . . ,Xb.

Let S1, . . . , S2b−1 be an arbitrary order of all the non-empty subsets of
{1, 2, . . . , b}.

Let ⊕ be the exclusive-or operation. Define m = 2b − 1 random variables

Yj = ⊕i∈SjXi =
∑
i∈Sj

Xi mod 2

• Pr(Yi = 1) = Pr(Yi = 0) = 1/2. Let z ∈ Si . Fix the bits in Si − {z}.
The value of Yi is determined by the value of z .

• Pairwise independence: For any c, d ∈ {0, 1}

Pr((Yk = c) ∩ (Y` = d)) = Pr(Y` = d | Yk = c) · Pr(Yk = c) = 1/4.

Since the value of Y` is determined by z ∈ S` \ Sk

Thus, Y1, . . .Y2b−1 are pairwise independent, uniform {0, 1} random variables.

4 / 1



The Expectation Argument: Large Cut-Set in a
Graph.

Theorem

Given any graph G = (V ,E) with n vertices and m edges, there is a partition
of V into two disjoint sets A and B such that at least m/2 edges connect a
vertex in A to a vertex in B.

Let Y1 . . . ,Yn pairwise independent uniform {0, 1} random variables, generated
from log2 n + 1 independent random bits.

Place such that vertex i is in set A if Yi = 0 else vertex i is placed in set B.

Let Ze = 1 if edge e crosses the cut, and Ze = 0 otherwise.

Let e = {i , j}, then Pr(Ze = 1) = Pr(Yi 6= Yj) = 1
2
,

E[Z ] = E
[∑m

i=1 Zi

]
=
∑m

i=1 E[Zi ], the sample space has an assignment with a
cut ≥ m/2.

The sample space has only 2n simple event, algorithm can try all simple events
to find a good assignment.

5 / 1



Deviation Bound

You cannot use Chernoff bound but you can use Chebyshev bound.

Theorem

Let X =
∑n

i=1 Xi , where the Xi are pairwise independent random variables.
Then

Var[X ] =
n∑

i=1

Var[Xi ].

Proof: Var[
∑n

i=1 Xi ] =
∑n

i=1 Var[Xi ] + 2
∑

i<j Cov(Xi ,Xj).

For Pairwise independent Xi ,X2, . . . ,Xn,

Cov(Xi ,Xj) = E[(Xi − E[Xi ])(Xj − E[Xj ])] = E[XiXj ]− E[Xi ]E [Xj ] = 0.

Corollary

Let X =
∑n

i=1 Xi , where the Xi are pairwise independent random variables.
Then

Pr(|X − E[X ]| ≥ a) ≤ Var[X ]

a2
=

∑n
i=1 Var[Xi ]

a2
.

6 / 1



Perfect Hashing

We want to store n records using minimus space and minimum
retrieval (search) time.

We can store the n records in a sorted order. Space = O(n),
retrieval time = O(log n)

We can hash the n keys to a table of size O(n), with O(1)
expected retrieval time, and O(log n) expected maximum retrieval
time. (We need a table of size Ω(n1+ε) for expected maximum
1/ε.)

Goal: Store a static dictionary of n items in a table of O(n)
space such that any search takes O(1) time.

Static dictionary - any insert or delete operation requires
rearranging the entire table.

7 / 1



Universal hash functions

Definition

Let U be a universe with |U| ≥ n and V = {0, 1, . . . , n − 1}. A
family of hash functions H from U to V is said to be k-universal
if, for any elements x1, x2, . . . , xk , when a hash function h is
chosen uniformly at random from H,

Pr(h(x1) = h(x2) = . . . = h(xk)) ≤ 1

nk−1
.

If Pr(h(x1) = h(x2) = . . . = h(xk)) = 1
nk−1 , then for any

x1, x2, . . . , xk the random variables h(x1), . . . , h(xk) are k-pairwise
independent.

8 / 1



Example of 2-Universal Hash Functions

Universe U = {0, 1, 2, . . . ,m − 1}
Table keys V = {0, 1, 2, . . . , n − 1}, with m ≥ n.
A family of hash functions obtained by choosing a prime p ≥ m,

ha,b(x) = ((ax + b) mod p) mod n,

and taking the family

H = {ha,b | 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p}.

Lemma

H is 2-universal.

9 / 1



Lemma

H is 2-universal.

Proof: We first observe that for x1, x2 ∈ {0, . . . , p − 1}, x1 6= x2,

ax1 + b 6= ax2 + b mod p.

Thus, if ha,b(x1) = ha,b(x2) there is a pair (s, r) such that,

1 (ax1 + b) mod p = r

2 (ax2 + b) mod p = s

3 s 6= r , s = (r mod n)

For each r there are ≤ dpne − 1 values s 6= r such that s = (r
mod n), and for each pair (r , s) there is only one pair (a, b) that
satisfies the relation.
Over all the p(p − 1) choice of (a, b), r gets p different values.

Thus, the probability of a collision is ≤ p(d p
n
e−1)

p(p−1) ≤
1
n .

10 / 1



Lemma

If h ∈ H is chosen uniformly at random from a 2-universal family
of hash functions mapping the universe U to [0, n − 1], then for
any set S ⊂ U of size m, with probability ≥ 1/2 the number of
collisions is bounded by m2/n.

proof:
Let s1, s2, . . . , sm be the m items of S . Let Xij be 1 if the
h(si ) = h(sj) and 0 otherwise. Let X =

∑
1≤i<j≤n Xij .

E[X ] = E

 ∑
1≤i<j≤n

Xij

 =
∑

1≤i<j≤m
E[Xij ] ≤

(
m

2

)
1

n
<

m2

2n
,

Markov’s inequality yields

Pr(X ≥ m2/n) ≤ Pr(X ≥ 2E[X ]) ≤ 1

2
.

11 / 1



Definition

A hash function is perfect for a set S if it maps S with no collisions.

Lemma

If h ∈ H is chosen uniformly at random from a 2-universal family
of hash functions mapping the universe U to [0, n − 1], then for
any set S ⊂ U of size m, such that m2 ≤ n with probability ≥ 1/2
the hash function is perfect

Pr(X ≥ 1) ≤ Pr(X ≥ m2/n) ≤ Pr(X ≥ 2E[X ]) ≤ 1

2
.

12 / 1



Theorem

The two-level approach gives a perfect hashing scheme for m items
using O(m) bins.

Level I: use a hash table with n = m. Let X be the number of
collisions,

Pr(X ≥ m2/n) ≤ Pr(X ≥ 2E[X ]) ≤ 1

2
.

When n = m, there exists a choice of hash function from the
2-universal family that gives at most m collisions.

13 / 1



Level II: Let ci be the number of items in the i-th bin. There are(ci
2

)
collisions between items in the i-th bin, thus

m∑
i=1

(
ci
2

)
≤ m.

For each bin with ci > 1 items, we find a second hash function
that gives no collisions using space c2i . The total number of bins
used is bounded above by

m +
m∑
i=1

c2i ≤ m + 2
m∑
i=1

(
ci
2

)
+

m∑
i=1

ci ≤ m + 2m + m = 4m.

Hence the total number of bins used is only O(m).

14 / 1



Perfect Hashing

Theorem

There is a storage method that can store m keys in a table of size
O(m) with O(1) search time.

15 / 1


