CS155/254: Probabilistic Methods in Computer Science

Chapter 15: Pairwise Independent and Hashing

Pairwise Independence

Definition

(1) A set of events $E_{1}, E_{2}, \ldots E_{n}$ is k-wise independent if for any subset $I \subseteq[1, n]$ with $|I| \leq k$,

$$
\operatorname{Pr}\left(\bigcap_{i \in I} E_{i}\right)=\prod_{i \in I} \operatorname{Pr}\left(E_{i}\right)
$$

(2) A set of random variables $X_{1}, X_{2}, \ldots X_{n}$ is k-wise independent if for any subset $I \subseteq[1, n]$ with $|I| \leq k$, and any values $x_{i}, i \in I$,

$$
\operatorname{Pr}\left(\bigcap_{i \in I} X_{i}=x_{i}\right)=\prod_{i \in I} \operatorname{Pr}\left(X_{i}=x_{i}\right)
$$

If true for $k=n$ the random variables are mutually independent.

Pairwise Independent

Definition

The random variables $X_{1}, X_{2}, \ldots X_{n}$ are said to be pairwise independent if they are 2-wise independent. That is, for any pair i, j and any values a, b,

$$
\operatorname{Pr}\left(\left(X_{i}=a\right) \cap\left(X_{j}=b\right)\right)=\operatorname{Pr}\left(X_{i}=a\right) \cdot \operatorname{Pr}\left(X_{j}=b\right)
$$

Application: We can construct $m=2^{b}-1$ uniform pairwise independent 0-1 random variable from b independent, uniform random bits, X_{1}, \ldots, X_{b}.
$m=2^{b}-1$ uniform pairwise independent 0-1 random variable in a sample space with $2 \cdot 2^{b}$ simple events.

Construction of Pairwise Independent Bits

We are given b independent, uniform random bits, X_{1}, \ldots, X_{b}.
Let $S_{1}, \ldots, S_{2 b-1}$ be an arbitrary order of all the non-empty subsets of $\{1,2, \ldots, b\}$.
Let \oplus be the exclusive-or operation. Define $m=2^{b}-1$ random variables

$$
Y_{j}=\oplus_{i \in S_{j}} X_{i}=\sum_{i \in S_{j}} X_{i} \bmod 2
$$

- $\operatorname{Pr}\left(Y_{i}=1\right)=\operatorname{Pr}\left(Y_{i}=0\right)=1 / 2$. Let $z \in S_{i}$. Fix the bits in $S_{i}-\{z\}$. The value of Y_{i} is determined by the value of z.
- Pairwise independence: For any $c, d \in\{0,1\}$

$$
\operatorname{Pr}\left(\left(Y_{k}=c\right) \cap\left(Y_{\ell}=d\right)\right)=\operatorname{Pr}\left(Y_{\ell}=d \mid Y_{k}=c\right) \cdot \operatorname{Pr}\left(Y_{k}=c\right)=1 / 4 .
$$

Since the value of Y_{ℓ} is determined by $z \in S_{\ell} \backslash S_{k}$
Thus, $Y_{1}, \ldots Y_{2^{b}-1}$ are pairwise independent, uniform $\{0,1\}$ random variables.

The Expectation Argument: Large Cut-Set in a Graph.

Theorem

Given any graph $G=(V, E)$ with n vertices and m edges, there is a partition of V into two disjoint sets A and B such that at least $m / 2$ edges connect a vertex in A to a vertex in B.

Let $Y_{1} \ldots, Y_{n}$ pairwise independent uniform $\{0,1\}$ random variables, generated from $\log _{2} n+1$ independent random bits.

Place such that vertex i is in set A if $Y_{i}=0$ else vertex i is placed in set B.
Let $Z_{e}=1$ if edge e crosses the cut, and $Z_{e}=0$ otherwise.
Let $e=\{i, j\}$, then $\operatorname{Pr}\left(Z_{e}=1\right)=\operatorname{Pr}\left(Y_{i} \neq Y_{j}\right)=\frac{1}{2}$,
$\mathrm{E}[Z]=\mathrm{E}\left[\sum_{i=1}^{m} Z_{i}\right]=\sum_{i=1}^{m} \mathrm{E}\left[Z_{i}\right]$, the sample space has an assignment with a cut $\geq m / 2$.

The sample space has only $2 n$ simple event, algorithm can try all simple events to find a good assignment.

Deviation Bound

You cannot use Chernoff bound but you can use Chebyshev bound.

Theorem

Let $X=\sum_{i=1}^{n} X_{i}$, where the X_{i} are pairwise independent random variables.
Then

$$
\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]
$$

Proof: $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.
For Pairwise independent $X_{i}, X_{2}, \ldots, X_{n}$,

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left[\left(X_{i}-\mathrm{E}\left[X_{i}\right]\right)\left(X_{j}-\mathrm{E}\left[X_{j}\right]\right)\right]=\mathrm{E}\left[X_{i} X_{j}\right]-\mathrm{E}\left[X_{i}\right] E\left[X_{j}\right]=0
$$

Corollary

Let $X=\sum_{i=1}^{n} X_{i}$, where the X_{i} are pairwise independent random variables. Then

$$
\operatorname{Pr}(|X-\mathrm{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}=\frac{\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]}{a^{2}}
$$

Perfect Hashing

We want to store n records using minimus space and minimum retrieval (search) time.

We can store the n records in a sorted order. Space $=O(n)$, retrieval time $=O(\log n)$

We can hash the n keys to a table of size $O(n)$, with $O(1)$ expected retrieval time, and $O(\log n)$ expected maximum retrieval time. (We need a table of size $\Omega\left(n^{1+\epsilon}\right)$ for expected maximum $1 / \epsilon$.)

Goal: Store a static dictionary of n items in a table of $O(n)$ space such that any search takes $O(1)$ time.

Static dictionary - any insert or delete operation requires rearranging the entire table.

Universal hash functions

Definition

Let U be a universe with $|U| \geq n$ and $V=\{0,1, \ldots, n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be k-universal if, for any elements $x_{1}, x_{2}, \ldots, x_{k}$, when a hash function h is chosen uniformly at random from \mathcal{H},

$$
\operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{2}\right)=\ldots=h\left(x_{k}\right)\right) \leq \frac{1}{n^{k-1}} .
$$

If $\operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{2}\right)=\ldots=h\left(x_{k}\right)\right)=\frac{1}{n^{k-1}}$, then for any $x_{1}, x_{2}, \ldots, x_{k}$ the random variables $h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are k-pairwise independent.

Example of 2-Universal Hash Functions

Universe $U=\{0,1,2, \ldots, m-1\}$
Table keys $V=\{0,1,2, \ldots, n-1\}$, with $m \geq n$.
A family of hash functions obtained by choosing a prime $p \geq m$,

$$
h_{a, b}(x)=((a x+b) \bmod p) \bmod n,
$$

and taking the family

$$
\mathcal{H}=\left\{h_{a, b} \mid 1 \leq a \leq p-1,0 \leq b \leq p\right\} .
$$

Lemma

\mathcal{H} is 2-universal.

Lemma

\mathcal{H} is 2-universal.
Proof: We first observe that for $x_{1}, x_{2} \in\{0, \ldots, p-1\}, x_{1} \neq x_{2}$,

$$
a x_{1}+b \neq a x_{2}+b \quad \bmod p .
$$

Thus, if $h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)$ there is a pair (s, r) such that,
(1) $\left(a x_{1}+b\right) \bmod p=r$
(2) $\left(a x_{2}+b\right) \bmod p=s$
(3) $s \neq r, s=(r \bmod n)$

For each r there are $\leq\left\lceil\frac{p}{n}\right\rceil-1$ values $s \neq r$ such that $s=(r$ $\bmod n$), and for each pair (r, s) there is only one pair (a, b) that satisfies the relation.
Over all the $p(p-1)$ choice of $(a, b), r$ gets p different values.
Thus, the probability of a collision is $\leq \frac{p\left(\left[\frac{p}{n}\right\rceil-1\right)}{p(p-1)} \leq \frac{1}{n}$.

Lemma

If $h \in \mathcal{H}$ is chosen uniformly at random from a 2-universal family of hash functions mapping the universe U to $[0, n-1]$, then for any set $S \subset U$ of size m, with probability $\geq 1 / 2$ the number of collisions is bounded by m^{2} / n.

proof:

Let $s_{1}, s_{2}, \ldots, s_{m}$ be the m items of S. Let $X_{i j}$ be 1 if the $h\left(s_{i}\right)=h\left(s_{j}\right)$ and 0 otherwise. Let $X=\sum_{1 \leq i<j \leq n} X_{i j}$.

$$
\mathrm{E}[X]=\mathrm{E}\left[\sum_{1 \leq i<j \leq n} X_{i j}\right]=\sum_{1 \leq i<j \leq m} \mathrm{E}\left[X_{i j}\right] \leq\binom{ m}{2} \frac{1}{n}<\frac{m^{2}}{2 n},
$$

Markov's inequality yields

$$
\operatorname{Pr}\left(X \geq m^{2} / n\right) \leq \operatorname{Pr}(X \geq 2 \mathrm{E}[X]) \leq \frac{1}{2}
$$

Definition

A hash function is perfect for a set S if it maps S with no collisions.

Lemma

If $h \in \mathcal{H}$ is chosen uniformly at random from a 2-universal family of hash functions mapping the universe U to $[0, n-1]$, then for any set $S \subset U$ of size m, such that $m^{2} \leq n$ with probability $\geq 1 / 2$ the hash function is perfect

$$
\operatorname{Pr}(X \geq 1) \leq \operatorname{Pr}\left(X \geq m^{2} / n\right) \leq \operatorname{Pr}(X \geq 2 \mathrm{E}[X]) \leq \frac{1}{2}
$$

Theorem

The two-level approach gives a perfect hashing scheme for m items using $O(m)$ bins.

Level I: use a hash table with $n=m$. Let X be the number of collisions,

$$
\operatorname{Pr}\left(X \geq m^{2} / n\right) \leq \operatorname{Pr}(X \geq 2 \mathrm{E}[X]) \leq \frac{1}{2}
$$

When $n=m$, there exists a choice of hash function from the 2-universal family that gives at most m collisions.

Level II: Let c_{i} be the number of items in the i-th bin. There are $\binom{c_{i}}{2}$ collisions between items in the i-th bin, thus

$$
\sum_{i=1}^{m}\binom{c_{i}}{2} \leq m
$$

For each bin with $c_{i}>1$ items, we find a second hash function that gives no collisions using space c_{i}^{2}. The total number of bins used is bounded above by

$$
m+\sum_{i=1}^{m} c_{i}^{2} \leq m+2 \sum_{i=1}^{m}\binom{c_{i}}{2}+\sum_{i=1}^{m} c_{i} \leq m+2 m+m=4 m .
$$

Hence the total number of bins used is only $O(m)$.

Perfect Hashing

Theorem

There is a storage method that can store m keys in a table of size $O(m)$ with $O(1)$ search time.

