CS155/254: Probabilistic Methods in
Computer Science

Chapter 15: Pairwise Independent and Hashing

Probability and
Computing

iques

Pairwise Independence

Definition

@ A set of events E;, B, ... E, is k-wise independent if for any subset
I C [1, n] with |/] < k,

Pr (ﬂ E,-) = []Pr(E).

iel i€l

@ A set of random variables Xi, X, ... X, is k-wise independent if for any
subset / C [1, n] with |/| < k, and any values x;, i € /,

Pr (m X,' = X,'> = H PF(X,‘ = X,').

i€l i€l

If true for k = n the random variables are mutually independent.

Pairwise Independent

Definition
The random variables X3, X5, ... X, are said to be pairwise

independent if they are 2-wise independent. That is, for any pair
i,Jj and any values a, b,

Pr((Xi = a) N (X; = b)) = Pr(X; = a) - Pr(X; = b).

Application: We can construct m = 22 — 1 uniform pairwise
independent 0-1 random variable from b independent, uniform
random bits, Xi,..., Xp.

m = 2> — 1 uniform pairwise independent 0-1 random variable in a
sample space with 2 - 2° simple events.

Construction of Pairwise Independent Bits

We are given b independent, uniform random bits, Xi,..., Xs.
Let S1,...,S5,,_; be an arbitrary order of all the non-empty subsets of
{1,2,...,b}.

Let @& be the exclusive-or operation. Define m = 2° — 1 random variables

Y = @jes Xi = » _ Xi mod 2

ics;

® Pr(Y;=1)=Pr(Y; =0)=1/2. Let z € 5;. Fix the bits in 5; — {z}.
The value of Y; is determined by the value of z.

® Pajrwise independence: For any c¢,d € {0,1}
Pr((Yk = C) n (Y[{ = d)) = PF(Y14 =d ‘ Y = C) . PI’(Yk = C) = 1/4.

Since the value of Y is determined by z € Sy \ Sk

Thus, Yi,... Y, _, are pairwise independent, uniform {0,1} random variables.

The Expectation Argument: Large Cut-Set in a
Graph.

Given any graph G = (V/, E) with n vertices and m edges, there is a partition
of V into two disjoint sets A and B such that at least m/2 edges connect a
vertex in A to a vertex in B.

Let Yi..., Y, pairwise independent uniform {0, 1} random variables, generated
from log, n + 1 independent random bits.

Place such that vertex i is in set A if Y; = 0 else vertex / is placed in set B.
Let Z. = 1 if edge e crosses the cut, and Z. = 0 otherwise.

Let e = {i,j}, then Pr(Z. = 1) = Pr(Y; # Y}) = 1,

E[Z] =E[>", Z] = >, E[Z], the sample space has an assignment with a
cut > m/2.

The sample space has only 2n simple event, algorithm can try all simple events
to find a good assignment.

Deviation Bound

You cannot use Chernoff bound but you can use Chebyshev bound.

Theorem

Let X = Y7 | Xi, where the X; are pairwise independent random variables.
Then

Var[X] = i Var[Xj].

Proof: Var[} !, Xi] = >>1, Var[Xi] + 23, _; Cov(X;, X;).
For Pairwise independent X;, X5, ..., X,,

Cov(Xi, Xj) = E[(X; — E[X])(X; — E[X]])] = E[XiXj] — E[X]]E[X]] = O.

Corollary

Let X =377 | X, where the X; are pairwise independent random variables.
Then

Var[X] _ >oi, Var[Xi] .

Pr(IX — EIX]| > a) < =

Perfect Hashing

We want to store n records using minimus space and minimum
retrieval (search) time.

We can store the n records in a sorted order. Space = O(n),
retrieval time = O(log n)

We can hash the n keys to a table of size O(n), with O(1)
expected retrieval time, and O(log n) expected maximum retrieval
time. (We need a table of size Q(n'*) for expected maximum

1/e.)
Goal: Store a static dictionary of n items in a table of O(n)
space such that any search takes O(1) time.

Static dictionary - any insert or delete operation requires
rearranging the entire table.

Universal hash functions

Definition

Let U be a universe with |[U| > nand V ={0,1,...,n—1}. A
family of hash functions H from U to V is said to be k-universal
if, for any elements xi, xo, . . ., xi, when a hash function h is
chosen uniformly at random from #,

1
Pr(h(x1) = h(x2) = ... = h(xx)) < g
If Pr(h(x1) = h(x2) = ... = h(xx)) = nkl,l, then for any
X1,X2, ..., X the random variables h(x1), ..., h(xx) are k-pairwise

independent.

Example of 2-Universal Hash Functions

Universe U ={0,1,2,...,m—1}

Table keys V ={0,1,2....,n— 1}, with m > n.

A family of hash functions obtained by choosing a prime p > m,
hab(x) = ((ax + b) mod p) mod n,

and taking the family

H={hop|1<a<p—-1,0<b<p}

Lemma

H is 2-universal.

Lemma

H is 2-universal.

Proof: We first observe that for x1,x € {0,...,p — 1}, x1 # xo,
axi+b#ax+b modp.

Thus, if h, (x1) = h, p(x2) there is a pair (s, r) such that,

® (axy+b) modp=r

@® (axx+b) modp=s

©® s#r,s=(r mod n)
For each r there are < [2] — 1 values s # r such that s = (r
mod n), and for each pair (r,s) there is only one pair (a, b) that
satisfies the relation.
Over all the p(p — 1) choice of (a, b), r gets p different values.

Thus, the probability of a collision is < p,()ih;) <1

— n-

10 /1

Lemma

If h € H is chosen uniformly at random from a 2-universal family
of hash functions mapping the universe U to [0,n — 1|, then for
any set S C U of size m, with probability > 1/2 the number of
collisions is bounded by m?/n.

proof:
Let s1,5,...,5, be the mitems of S. Let Xj; be 1 if the
h(si) = h(s;) and O otherwise. Let X =3, .-, Xj.

m\ 1 m?
M=e| ¥ x| = ¥ els (7)<
1<i<j<n 1<i<j<m

Markov's inequality yields

Pr(X > m?/n) < Pr(X > 2E[X]) <

N =

11 /1

A hash function is perfect for a set S if it maps S with no collisions.

Lemma

If h € H is chosen uniformly at random from a 2-universal family
of hash functions mapping the universe U to [0,n — 1|, then for
any set S C U of size m, such that m?> < n with probability > 1/2
the hash function is perfect

Pr(X > 1) < Pr(X > m?/n) < Pr(X > 2E[X]) <

N —

12 /1

Theorem

The two-level approach gives a perfect hashing scheme for m items
using O(m) bins.

Level I: use a hash table with n = m. Let X be the number of
collisions,

Pr(X > m?/n) < Pr(X > 2E[X]) <

N =

When n = m, there exists a choice of hash function from the
2-universal family that gives at most m collisions.

12 /1

Level lI: Let ¢; be the number of items in the i-th bin. There are
(5) collisions between items in the i-th bin, thus

2
m .
>o(5) <

For each bin with ¢; > 1 items, we ﬁnd a second hash function
that gives no collisions using space c . The total number of bins
used is bounded above by

m+Zc <m+2z<c'>+2c,<m+2m+m—4m

i=1

Hence the total number of bins used is only O(m).

14 /1

Perfect Hashing

There is a storage method that can store m keys in a table of size
O(m) with O(1) search time.

15 /1

