
CS155/254: Probabilistic Methods in
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Chapters 2 & 3



Randome Variables and Expectation
Example: QuickSort

Procedure Q S(S);
Input: An array S .
Output: The array S in sorted order.

1 Choose a random element y uniformly from S .

2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

3 Return the list:
Q S(S1), y ,Q S(S2).



Let T (n) = number of comparisons in a run of QuickSort on an
array of size n.

T (n) is a random variable.

Theorem

The expected number of steps in sorting an array of n elements
using QuickSort is

E [T (n)] = O(n log n).



Random Variable

Definition

A random variable X on a sample space Ω is a real-valued
function on Ω; that is, X : Ω→ R
A vector random variable is X d : Ω→ Rd

A discrete random variable is a random variable that takes on only
a finite or countably infinite number of values.

Discrete random variable X and real value a: the event “X = a”
represents the set {s ∈ Ω : X (s) = a}.

Pr(X = a) = Pr({s ∈ Ω : X (s) = a}) =
∑

s∈Ω:X (s)=a

Pr(s)



Independence

Definition

Two random variables X and Y are independent if and only if

Pr((X = x) ∩ (Y = y)) = Pr(X = x) · Pr(Y = y)

for all values x and y . Similarly, random variables X1,X2, . . .Xk

are mutually independent if and only if for any subset I ⊆ [1, k]
and any values xi ,i ∈ I ,

Pr

(⋂
i∈I

Xi = xi

)
=

∏
i∈I

Pr(Xi = xi ).



Expectation

Definition

The expectation of a discrete random variable X , denoted by
E[X ], is given by

E[X ] =
∑
i

i Pr(X = i),

where the summation is over all values in the range of X . The
expectation is finite if

∑
i |i |Pr(X = i) converges; otherwise, the

expectation is unbounded.

The expectation (or mean or average) is a weighted sum over all
possible values of the random variable.



Median

Definition

The median of a random variable X is a value m such

Pr(X < m) ≤ 1/2 and Pr(X > m) < 1/2.



Quicksort
:

Procedure Q S(S);
Input: An array S .
Output: The array S in sorted order.

1 Choose a random element y uniformly from S .
2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

3 Return the list:
Q S(S1), y ,Q S(S2).

Theorem

The expected number of steps in sorting an array of n elements
using QuickSort is

E [T (n)] = O(n log n).



https://medium.com/@nathaldawson/unraveling-quicksort-the-fast-and-versatile-sorting-algorithm-2c1214755ce9



Proof:

Let s1, ...., sn be the elements of S is sorted order.
For i = 1, ..., n, and j > i , define 0-1 random variable Xi ,j , s.t.
Xi ,j = 1 iff si is directly compared to sj in the run of the algorithm,
else Xi ,j = 0. (Xi ,j = Xj ,i )
The number of comparisons in running the algorithm is

T (n) =
n∑

i=1

∑
j>i

Xi ,j .

We are interested in

E [T (n)] = E [
n∑

i=1

∑
j>i

Xi ,j ] =
n∑

i=1

∑
j>i

E [Xi ,j ].



Linearity of Expectation

Theorem

For any two random variables X and Y

E [X + Y ] = E [X ] + E [Y ].

Lemma

For any constant c and discrete random variable X ,

E[cX ] = cE[X ].



We are interested in E [T (n)] =
∑n

i=1

∑
j>i E [Xi ,j ].

Since Xi ,j is a 0-1 random variable,

E [Xi ,j ] = 0 · Pr(Xi ,j = 0) + 1 · Pr(Xi ,j = 1) = Pr(Xi ,j = 1).

What is the probability that Xi ,j = 1?

si is compared to sj iff either si or sj is chosen as a “split item”
before any of the j − i − 1 elements between si and sj are chosen.
Elements are chosen uniformly at random → elements in the set
[si , si+1, ...., sj ] are chosen uniformly at random.

Pr(Xi ,j = 1) =
2

j − i + 1
.

E [Xi ,j ] =
2

j − i + 1
.



E [T ] = E [
n∑

i=1

∑
j>i

Xi ,j ] =

n∑
i=1

∑
j>i

E [Xi ,j ] =
n∑

i=1

∑
j>i

2

j − i + 1
≤

n
n∑

k=1

2

k
≤ 2nHn = 2n log n + O(n).



A Deterministic QuickSort

Procedure DQ S(S);
Input: A set S .
Output: The set S in sorted order.

1 Let y be the first element in S .

2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

(Elements is S1 and S2 are in th same order as in S .)

3 Return the list:

DQ S(S1), y ,DQ S(S2).



Probabilistic Analysis of QuickSort

Theorem

The expected run time of DQ S on a random input, uniformly
chosen from all possible permutation of S is O(n log n).

Proof.

Set Xi ,j as before.
If all permutations have equal probability, all permutations of
Si , ...,Sj have equal probability, thus

Pr(Xi ,j) =
2

j − i + 1
.

E [
n∑

i=1

∑
j>i

Xi ,j ] = O(n log n).



Randomized Algorithms:

• Analysis is true for any input.

• The sample space is the space of random choices made by the
algorithm.

• Repeated runs are independent.

Probabilistic Analysis:

• The sample space is the space of all possible inputs.

• If the algorithm is deterministic repeated runs give the same
output.



Algorithm classification

A Monte Carlo Algorithm is a randomized algorithm that may
produce an incorrect solution.
For decision problems: A one-side error Monte Carlo algorithm
errs only one one possible output, otherwise it is a two-side error
algorithm.
A Las Vegas algorithm is a randomized algorithm that always
produces the correct output.
In both types of algorithms the run-time is a random variable.



Example: The Coupon Collector’s Problem

• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until all boxes are not
empty.

• What is E[X ]?



• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until all boxes are not
empty.

• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is a geometric random variable with parameter
pi = 1− i−1

n .



The Geometric Distribution

Definition

A geometric random variable X with parameter p is given by the
following probability distribution on n = 1, 2, . . ..

Pr(X = n) = (1− p)n−1p.

Example: repeatedly draw independent Bernoulli random variables
with parameter p > 0 until we get a 1. Let X be number of trials
up to and including the first 1. Then X is a geometric random
variable with parameter p.



Memoryless Distribution

Lemma

For a geometric random variable with parameter p and n > 0,

Pr(X = n + k | X > k) = Pr(X = n).

Proof.

Pr(X = n + k | X > k) =
Pr((X = n + k) ∩ (X > k))

Pr(X > k)

=
Pr(X = n + k)

Pr(X > k)
=

(1− p)n+k−1p∑∞
i=k(1− p)ip

=
(1− p)n+k−1p

(1− p)k
= (1− p)n−1p = Pr(X = n).



Conditional Expectation

Definition

E[Y | Z = z ] =
∑
y

y Pr(Y = y | Z = z),

where the summation is over all y in the range of Y .

Lemma

For any random variables X and Y ,

E[X ] = Ey [EX [X | Y ]] =
∑
y

Pr(Y = y)E [X | Y = y ],

where the sum is over all values in the range of Y .



Geometric Random Variable: Expectation

• Let X be a geometric random variable with parameter p.

• Let Y = 1 if the first trail is a success, Y = 0 otherwise.

•

E[X ] = Pr(Y = 0)E[X | Y = 0] + Pr(Y = 1)E[X | Y = 1]

= (1− p)E[X | Y = 0] + pE[X | Y = 1].

• If Y = 0 let Z be the number of trials after the first one.

• E[X ] = (1− p)E[Z + 1] + p · 1 = (1− p)E[Z ] + 1

• But E[Z ] = E[X ], giving E[X ] = 1/p.



Lemma

Let X be a discrete random variable that takes on only
non-negative integer values. Then

E[X ] =
∞∑
i=1

Pr(X ≥ i).

Proof.

∞∑
i=1

Pr(X ≥ i) =
∞∑
i=1

∞∑
j=i

Pr(X = j)

=
∞∑
j=1

j∑
i=1

Pr(X = j)

=
∞∑
j=1

j Pr(X = j) = E[X ].

The interchange of (possibly) infinite summations is justified,
because the terms being summed are all non-negative.



For a geometric random variable X with parameter p,

Pr(X ≥ i) =
∞∑
n=i

(1− p)n−1p = (1− p)i−1.

E[X ] =
∞∑
i=1

Pr(X ≥ i)

=
∞∑
i=1

(1− p)i−1

=
1

1− (1− p)

=
1

p



Back to the Coupon Collector Problem

• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is a geometric random variable with parameter
pi = 1− i−1

n .

E[Xi ] =
1

pi
=

n

n − i + 1
.

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ]

=
n∑

i=1

n

n − i + 1
= n

n∑
i=1

1

i
= n ln n + Θ(n).



Bounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable

Pr(X ≥ a) ≤ E [X ]

a
.

Proof.

E [X ] =
∑

iPr(X = i) ≥ a
∑
i≥a

Pr(X = i) = aPr(X ≥ a).

Example: What is the probability of getting more than 3N
4 heads in

N coin flips? ≤ N/2
3N/4 ≤

2
3 .



Variance

Definition

The variance of a random variable X is

Var [X ] = E[(X − E[X ])2] = E[X 2]− (E[X ])2.

Definition

The standard deviation of a random variable X is

σ(X ) =
√

Var [X ].



Example: Let X be a 0-1 random variable with
Pr(X = 0) = Pr(X = 1) = 1/2.

E [X ] = 1/2.

Var [X ] =
1

2
(1− 1

2
)2 +

1

2
(0− 1

2
)2 =

1

4
.



Chebyshev’s Inequality

Theorem

For any random variable

Pr(|X − E [X ]| ≥ a) ≤ Var [X ]

a2
.

Proof.

Pr(|X − E [X ]| ≥ a) = Pr((X − E [X ])2 ≥ a2)

By Markov inequality

Pr((X − E [X ])2 ≥ a2) ≤ E [(X − E [X ])2]

a2

=
Var [X ]

a2



Theorem

For any random variable

Pr(|X − E [X ]| ≥ aσ[X ]) ≤ 1

a2
.

Theorem

For any random variable

Pr(|X − E [X ]| ≥ εE [X ]) ≤ Var [X ]

ε2(E [X ])2
.



Theorem

If X and Y are independent random variable

E [XY ] = E [X ] · E [Y ],

Proof.

E [XY ] =
∑
i

∑
j

i · jPr((X = i) ∩ (Y = j)) =

∑
i

∑
j

ijPr(X = i) · Pr(Y = j) =

(
∑
i

iPr(X = i))(
∑
j

jPr(Y = j)).



Theorem

If X and Y are independent random variable

Var [X + Y ] = Var [X ] + Var [Y ].

Proof.

Var [X + Y ] = E [(X + Y − E [X ]− E [Y ])2] =

E [(X − E [X ])2 + (Y − E [Y ])2 + 2(X − E [X ])(Y − E [Y ])] =

Var [X ] + Var [Y ] + 2E [X − E [X ]]E [Y − E [Y ]]

Since the random variables X − E [X ] and Y − E [Y ] are
independent.
But E [X − E [X ]] = E [X ]− E [X ] = 0.



Variance of a Geometric Random Variable
• We use

Var [X ] = E[(X − E[X ])2] = E[X 2]− (E[X ])2.

• To compute E[X 2], let Y = 1 if the first trail is a success,
Y = 0 otherwise.
•

E[X 2] = Pr(Y = 0)E[X 2 | Y = 0] + Pr(Y = 1)E[X 2 | Y = 1]

= (1− p)E[X 2 | Y = 0] + pE[X 2 | Y = 1].

• If Y = 0 let Z be the number of trials after the first one.
•

E[X 2] = (1− p)E[(Z + 1)2] + p · 1
= (1− p)E[Z 2] + 2(1− p)E[Z ] + 1,



• E[Z ] = 1/p and E[Z 2] = E[X 2].

•

E[X 2] = (1− p)E[(Z + 1)2] + p · 1
= (1− p)E[Z 2] + 2(1− p)E[Z ] + 1,

•

E[X 2] = (1−p)E[X 2]+2(1−p)/p+1 = (1−p)E[X 2]+(2−p)/p,

• E[X 2] = (2− p)/p2.



Var [X ] = E[X 2]− E[X ]2

=
2− p

p2
− 1

p2

=
1− p

p2
.



Back to the Coupon Collector’s Problem

• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until all boxes are not
empty.

• E [X ] = nHn = n ln n + Θ(n)

• What is Pr(X ≥ 2E[X ])?

• Applying Markov’s inequality

Pr(X ≥ 2nHn) ≤ 1

2
.

• Can we do better?



• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is a geometric random variable with parameter
pi = 1− i−1

n .

• Var [Xi ] ≤ 1
p2 ≤ ( n

n−i+1 )2.

•

Var [X ] =
n∑

i=1

Var [Xi ] ≤
n∑

i=1

(
n

n − i + 1

)2

= n2
n∑

i=1

(
1

i

)2

≤ π2n2

6
.

• By Chebyshev’s inequality

Pr(|X − nHn| ≥ nHn) ≤ n2π2/6

(nHn)2
=

π2

6(Hn)2
= O

(
1

ln2 n

)
.



Direct Bound

• The probability of not obtaining the i-th coupon after
n ln n + cn steps:(

1− 1

n

)n(ln n+c)

< e−(ln n+c) =
1

ecn
.

• By a union bound, the probability that some coupon has not
been collected after n ln n + cn step is e−c .

• The probability that all coupons are not collected after 2n ln n
steps is at most 1/n.


