CS155/254: Probabilistic Methods in Computer Science

Chapter 4.1: Large Deviation Bounds

Large Deviation Bounds

A typical probability theory statement:

Theorem (The Central Limit Theorem)

Let X_{1}, \ldots, X_{n} be independent identically distributed random variables with common mean μ and variance σ^{2}. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t
$$

A typical CS probabilistic tool:

Theorem (Chernoff Bound)

Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables such that $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. Let $\mu=\frac{1}{n} \sum_{i=1}^{n} p_{i}$, then

$$
\operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq(1+\delta) \mu\right) \leq e^{-\mu n \delta^{2} / 3}
$$

Chernof Bound - Large Deviation Bound

Theorem

Let X_{1}, \ldots, X_{n} be independent, $0-1$ random variables with $\operatorname{Pr}\left(X_{i}=1\right)=E\left[X_{i}\right]=p_{i}$. Let $\mu=\sum_{i=1}^{n} p_{i}$, then for any $\delta \in[0,1]$ we have

$$
\operatorname{Prob}\left(\sum_{i=1}^{n} X_{i} \geq(1+\delta) \mu\right) \leq e^{-\mu \delta^{2} / 3}
$$

and

$$
\operatorname{Prob}\left(\sum_{i=1}^{n} X_{i} \leq(1-\delta) \mu\right) \leq e^{-\mu \delta^{2} / 2}
$$

Consider n coin flips. Let X be the number of heads.
Markov Inequality gives

$$
\operatorname{Pr}\left(x \geq \frac{3 n}{4}\right) \leq \frac{n / 2}{3 n / 4} \leq \frac{2}{3}
$$

Using the Chebyshev's bound we have:

$$
\operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right) \leq \frac{4}{n}
$$

Using the Chernoff bound in this case, we obtain

$$
\begin{aligned}
\operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right) & =\operatorname{Pr}\left(X \geq \frac{n}{2}\left(1+\frac{1}{2}\right)\right) \\
& +\operatorname{Pr}\left(X \leq \frac{n}{2}\left(1-\frac{1}{2}\right)\right) \\
& \leq e^{-\frac{1}{3} \frac{n}{2} \frac{1}{4}}+e^{-\frac{1}{2} \frac{n}{2} \frac{1}{4}} \leq 2 e^{-\frac{n}{24}}
\end{aligned}
$$

The Basic Idea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:
For any $t>0$,

$$
\operatorname{Pr}(X \geq a)=\operatorname{Pr}\left(e^{t X} \geq e^{t a}\right) \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
$$

Similarly, for any $t<0$

$$
\operatorname{Pr}(X \leq a)=\operatorname{Pr}\left(e^{t X} \geq e^{t a}\right) \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
$$

Theorem (Markov Inequality)

If a random variable X is non-negative $(X \geq 0)$ then

$$
\operatorname{Prob}(X \geq a) \leq \frac{E[X]}{a}
$$

The General Scheme:

For any random variable X :
(1) computing $E\left[e^{t X}\right]$
(2) optimize

$$
\begin{aligned}
& \operatorname{Pr}(X \geq a) \leq \min _{t>0} \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}} \\
& \operatorname{Pr}(X \leq a) \leq \min _{t<0} \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
\end{aligned}
$$

(3) symplify

Moment Generating Function

Definition

The moment generating function of a random variable X is defined for any real value t as

$$
M_{X}(t)=\mathrm{E}\left[e^{t X}\right]
$$

Theorem

Let X be a random variable with moment generating function $M_{X}(t)$. Assuming that exchanging the expectation and differentiation operands is legitimate, then for all $n \geq 1$

$$
\mathrm{E}\left[X^{n}\right]=M_{X}^{(n)}(0)
$$

where $M_{X}^{(n)}(0)$ is the n-th derivative of $M_{X}(t)$ evaluated at $t=0$.

Proof.

$$
M_{X}^{(n)}(t)=\mathrm{E}\left[X^{n} e^{t X}\right]
$$

Computed at $t=0$ we get

$$
M_{X}^{(n)}(0)=\mathrm{E}\left[X^{n}\right]
$$

Why we can switch the order of the derivative and the expectation?
Assume for simplicity that X has integer values. Let $D(X)$ be the domain of X.

$$
M_{X}(t)=E\left[e^{t X}\right]=\sum_{i \in D(X)} e^{t i} \operatorname{Pr}(X=i)
$$

For finite or uniformly convergent sum:

$$
\begin{aligned}
M_{X}^{(1)}(t) & =\frac{d}{d t} E\left[e^{t X}\right]=\frac{d}{d t}\left(\sum_{i \in D(X)} e^{t i} \operatorname{Pr}(X=i)\right) \\
& =\sum_{i \in D(X)} \frac{d}{d t} e^{t i} \operatorname{Pr}(X=i)=E\left[\frac{d}{d t} e^{t i}\right]
\end{aligned}
$$

Theorem

Let X and Y be two random variables. If

$$
M_{X}(t)=M_{Y}(t)
$$

for all $t \in(-\delta, \delta)$ for some $\delta>0$, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables then

$$
M_{X+Y}(t)=M_{X}(t) M_{Y}(t) .
$$

Proof.

$$
M_{X+Y}(t)=\mathrm{E}\left[e^{t(X+Y)}\right]=\mathrm{E}\left[e^{t X}\right] \mathbb{E}\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t) .
$$

Chernoff Bound for Sum of Bernoulli Trials

Theorem

Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables such that $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=\sum_{i=1}^{n} p_{i}$.

- For any $\delta>0$,

$$
\begin{equation*}
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \tag{1}
\end{equation*}
$$

- For $0<\delta \leq 1$,

$$
\begin{equation*}
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\mu \delta^{2} / 3} \tag{2}
\end{equation*}
$$

- For $R \geq 6 \mu$,

$$
\begin{equation*}
\operatorname{Pr}(X \geq R) \leq 2^{-R} \tag{3}
\end{equation*}
$$

Chernoff Bound for Sum of Bernoulli Trials

Let X_{1}, \ldots, X_{n} be a sequence of independent Bernoulli trials with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. Let $X=\sum_{i=1}^{n} X_{i}$, and let

$$
\mu=\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\sum_{i=1}^{n} p_{i}
$$

For each X_{i} :

$$
\begin{aligned}
M_{X_{i}}(t) & =\mathrm{E}\left[e^{t X_{i}}\right] \\
& =p_{i} e^{t}+\left(1-p_{i}\right) \\
& =1+p_{i}\left(e^{t}-1\right) \\
& \leq e^{p_{i}\left(e^{t}-1\right)}
\end{aligned}
$$

$$
M_{X_{i}}(t)=\mathrm{E}\left[e^{t X_{i}}\right] \leq e^{p_{i}\left(e^{t}-1\right)}
$$

Taking the product of the n generating functions we get for $X=\sum_{i=1}^{n} X_{i}$

$$
\begin{aligned}
M_{X}(t) & =\prod_{i=1}^{n} M_{X_{i}}(t) \\
& \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{t}-1\right)} \\
& =e^{\sum_{i=1}^{n} p_{i}\left(e^{t}-1\right)} \\
& =e^{\left(e^{t}-1\right) \mu}
\end{aligned}
$$

$$
M_{X}(t)=\mathrm{E}\left[e^{t X}\right]=e^{\left(e^{t}-1\right) \mu}
$$

Applying Markov's inequality we have for any $t>0$

$$
\begin{aligned}
\operatorname{Pr}(X \geq(1+\delta) \mu) & =\operatorname{Pr}\left(e^{t X} \geq e^{t(1+\delta) \mu}\right) \\
& \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}} \\
& \leq \frac{e^{\left(e^{t}-1\right) \mu}}{e^{t(1+\delta) \mu}}
\end{aligned}
$$

For any $\delta>0$, we can set $t=\ln (1+\delta)>0$ to get:

$$
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

This proves (1).

We show that for $0<\delta<1$,

$$
\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\delta^{2} / 3}
$$

or that

$$
f(\delta)=\delta-(1+\delta) \ln (1+\delta)+\delta^{2} / 3 \leq 0
$$

in that interval. Computing the derivatives of $f(\delta)$ we get

$$
\begin{aligned}
f^{\prime}(\delta) & =1-\frac{1+\delta}{1+\delta}-\ln (1+\delta)+\frac{2}{3} \delta=-\ln (1+\delta)+\frac{2}{3} \delta \\
f^{\prime \prime}(\delta) & =-\frac{1}{1+\delta}+\frac{2}{3}
\end{aligned}
$$

$f^{\prime \prime}(\delta)<0$ for $0 \leq \delta<1 / 2$, and $f^{\prime \prime}(\delta)>0$ for $\delta>1 / 2$.
$f^{\prime}(\delta)$ first decreases and then increases over the interval $[0,1]$.
Since $f^{\prime}(0)=0$ and $f^{\prime}(1)<0, f^{\prime}(\delta) \leq 0$ in the interval $[0,1]$. Since $f(0)=0$, we have that $f(\delta) \leq 0$ in that interval. This proves (2).

For $R \geq 6 \mu, \delta \geq 5$.

$$
\begin{aligned}
\operatorname{Pr}(X \geq(1+\delta) \mu) & \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \\
& \leq\left(\frac{e}{6}\right)^{R} \\
& \leq 2^{-R}
\end{aligned}
$$

that proves (3).

Theorem

Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables such that $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathrm{E}[X]$. For $0<\delta<1$:

$$
\begin{equation*}
\operatorname{Pr}(X \leq(1-\delta) \mu) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Pr}(X \leq(1-\delta) \mu) \leq e^{-\mu \delta^{2} / 2} \tag{5}
\end{equation*}
$$

Using Markov's inequality, for any $t<0$,

$$
\begin{aligned}
\operatorname{Pr}(X \leq(1-\delta) \mu) & =\operatorname{Pr}\left(e^{t X} \geq e^{(1-\delta) t \mu}\right) \\
& \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1-\delta) \mu}} \\
& \leq \frac{e^{\left(e^{t}-1\right) \mu}}{e^{t(1-\delta) \mu}}
\end{aligned}
$$

For $0<\delta<1$, we set $t=\ln (1-\delta)<0$ to get:

$$
\operatorname{Pr}(X \leq(1-\delta) \mu) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
$$

This proves (4).
We need to show:

$$
f(\delta)=-\delta-(1-\delta) \ln (1-\delta)+\frac{1}{2} \delta^{2} \leq 0
$$

We need to show:

$$
f(\delta)=-\delta-(1-\delta) \ln (1-\delta)+\frac{1}{2} \delta^{2} \leq 0
$$

Differentiating $f(\delta)$ we get

$$
\begin{aligned}
f^{\prime}(\delta) & =\ln (1-\delta)+\delta \\
f^{\prime \prime}(\delta) & =-\frac{1}{1-\delta}+1
\end{aligned}
$$

Since $f^{\prime \prime}(\delta)<0$ for $\delta \in(0,1), f^{\prime}(\delta)$ decreasing in that interval. Since $f^{\prime}(0)=0, f^{\prime}(\delta) \leq 0$ for $\delta \in(0,1)$. Therefore $f(\delta)$ is non increasing in that interval.
$f(0)=0$. Since $f(\delta)$ is non increasing for $\delta \in[0,1), f(\delta) \leq 0$ in that interval, and (5) follows.

Example: Coin flips

Theorem (The Central Limit Theorem)

Let X_{1}, \ldots, X_{n} be independent identically distributed random variables with common mean μ and variance σ^{2}. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t .
$$

$\Phi(2.23)=0.99$, thus, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu}{\sigma / \sqrt{n}} \leq 2.23\right)=0.99$
For coin flips:
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}-1 / 2}{1 /(2 \sqrt{n})} \leq 2.23\right)=0.99$
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i}-\frac{n}{2} \geq 2.23 \sqrt{n} / 2\right)=0.01$
$\Phi(3.5) \approx 0.999, \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i}-\frac{n}{2} \geq 3.5 \sqrt{n} / 2\right)=0.001$

Example: Coin flips

Let X be the number of heads in a sequence of n independent fair coin flips.

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{1}{2} \sqrt{6 n \ln n}\right) \\
= & \operatorname{Pr}\left(X \geq \frac{n}{2}\left(1+\sqrt{\frac{6 \ln n}{n}}\right)\right) \\
+ & \operatorname{Pr}\left(X \leq \frac{n}{2}\left(1-\sqrt{\frac{6 \ln n}{n}}\right)\right) \\
\leq & e^{-\frac{1}{3} \frac{n}{2} \frac{6 \ln n}{n}}+e^{-\frac{1}{2} \frac{n}{2} \frac{6 \ln n}{n}} \leq \frac{2}{n} .
\end{aligned}
$$

Note that the standard deviation is $\sqrt{n / 4}$

Example: estimate the value of π

- Choose X and Y independently and uniformly at random in $[0,1]$.
- Let

$$
Z= \begin{cases}1 & \text { if } \sqrt{X^{2}+Y^{2}} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- $\frac{1}{2} \leq p=\operatorname{Pr}(Z=1)=\frac{\pi}{4} \leq 1$.
- $4 \mathrm{E}[Z]=\pi$.
- Let Z_{1}, \ldots, Z_{m} be the values of m independent experiments. $W_{m}=\sum_{i=1}^{m} Z_{i}$.

$$
\mathrm{E}\left[W_{m}\right]=\mathrm{E}\left[\sum_{i=1}^{m} Z_{i}\right]=\sum_{i=1}^{m} \mathrm{E}\left[Z_{i}\right]=\frac{m \pi}{4},
$$

- $\tilde{\pi}_{m}=\frac{4}{m} W_{m}$ is an unbiased estimate for π (i.e. $E\left[\tilde{\pi}_{m}\right]=\pi$)
- How many samples do we need to obtain a good estimate?

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\tilde{\pi}_{m}-\pi\right| \geq \epsilon \pi\right) & =\operatorname{Pr}\left(\left|W-\frac{m \pi}{4}\right| \geq \frac{\epsilon m \pi}{4}\right) \\
& =\operatorname{Pr}\left(\left|W_{m}-\mathrm{E}\left[W_{m}\right]\right| \geq \epsilon \mathrm{E}\left[W_{m}\right]\right) \\
=\operatorname{Pr}\left(W_{m}-\mathrm{E}\left[W_{m}\right] \geq \epsilon \mathrm{E}\left[W_{m}\right]\right) & +\operatorname{Pr}\left(W_{m}-\mathrm{E}\left[W_{m}\right] \leq \epsilon \mathrm{E}\left[W_{m}\right]\right) \\
\leq \mathrm{e}^{-\frac{1}{3} \frac{m \pi}{4} \epsilon^{2}} & +\mathrm{e}^{-\frac{1}{2} \frac{m \pi}{4} \epsilon^{2}} \leq 2 \mathrm{e}^{-\frac{1}{12} m \pi \epsilon^{2}}
\end{aligned}
$$

Since it's easy to verify that $\pi>2$

$$
\operatorname{Pr}\left(\left|\tilde{\pi}_{m}-\pi\right| \geq \epsilon \pi\right) \leq 2 \mathrm{e}^{-\frac{1}{12} m \pi \epsilon^{2}} \leq \mathrm{e}^{-\frac{1}{6} m \epsilon^{2}}=\delta
$$

For $\epsilon=0.1$ and $\delta=0.01$ we need $m \geq 4000$.

Set Balancing

Given an $n \times n$ matrix \mathcal{A} with entries in $\{0,1\}$, let

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
\ldots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\ldots \\
\ldots \\
c_{n}
\end{array}\right)
$$

Find a vector \bar{b} with entries in $\{-1,1\}$ that minimizes

$$
\|\mathcal{A} \bar{b}\|_{\infty}=\max _{i=1, \ldots, n}\left|c_{i}\right|
$$

Theorem

For a random vector \bar{b}, with entries chosen independently and with equal probability from the set $\{-1,1\}$,

$$
\operatorname{Pr}\left(\|\mathcal{A} \bar{b}\|_{\infty} \geq \sqrt{4 n \ln n}\right) \leq \frac{2}{n}
$$

The $\sum_{i=1}^{n} a_{j, i} b_{i}$ (excluding the zero terms) is a sum of independent $-1,1$ random variable. We need a bound on such sum.

Chernoff Bound for Sum of $\{-1,+1\}$ Random Variables

Theorem
Let X_{1}, \ldots, X_{n} be independent random variables with

$$
\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=-1\right)=\frac{1}{2} .
$$

Let $X=\sum_{1}^{n} X_{i}$. For any $a>0$,

$$
\operatorname{Pr}(X \geq a) \leq e^{-\frac{a^{2}}{2 n}}
$$

de Moivre - Laplace approximation: For any k, such that $|k-n p| \leq a$

$$
\binom{n}{k} p^{k}(1-p)^{n-k} \approx \frac{1}{\sqrt{2 \pi n p(1-p)}} e^{-\frac{\partial^{2}}{2 n p(1-p)}}
$$

For any $t>0$,

$$
\begin{gathered}
\mathrm{E}\left[e^{t X_{i}}\right]=\frac{1}{2} e^{t}+\frac{1}{2} e^{-t} \\
e^{t}=1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{i}}{i!}+\ldots
\end{gathered}
$$

and

$$
e^{-t}=1-t+\frac{t^{2}}{2!}+\cdots+(-1)^{i^{i}} \frac{t^{i}}{i!}+\ldots
$$

Thus,

$$
\begin{aligned}
\mathrm{E}\left[e^{t X_{i}}\right] & =\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}=\sum_{i \geq 0} \frac{t^{2 i}}{(2 i)!} \\
& \leq \sum_{i \geq 0} \frac{\left(\frac{t^{2}}{2}\right)^{i}}{i!}=e^{t^{2} / 2}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{E}\left[e^{t X}\right]=\prod_{i=1}^{n} \mathrm{E}\left[e^{t X_{i}}\right] \leq e^{n t^{2} / 2} \\
\operatorname{Pr}(X \geq a)=\operatorname{Pr}\left(e^{t X}>e^{t a}\right) \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}} \leq e^{t^{2} n / 2-t a} .
\end{gathered}
$$

Setting $t=a / n$ yields

$$
\operatorname{Pr}(X \geq a) \leq e^{-\frac{a^{2}}{2 n}}
$$

By symmetry we also have

Corollary

Let X_{1}, \ldots, X_{n} be independent random variables with

$$
\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=-1\right)=\frac{1}{2}
$$

Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $a>0$,

$$
\operatorname{Pr}(|X|>a) \leq 2 e^{-\frac{\partial^{2}}{2 n}}
$$

Application: Set Balancing

Theorem

For a random vector \bar{b}, with entries chosen independently and with equal probability from the set $\{-1,1\}$,

$$
\begin{equation*}
\operatorname{Pr}\left(\|\mathcal{A} \bar{b}\|_{\infty} \geq \sqrt{4 n \ln n}\right) \leq \frac{2}{n} \tag{6}
\end{equation*}
$$

- Consider the i-th row $\bar{a}_{i}=a_{i, 1}, \ldots, a_{i, n}$.
- Let k be the number of 1 's in that row.
- $Z_{i}=\sum_{j=1}^{k} a_{i, i_{j}} b_{i j}$.
- If $k \leq \sqrt{4 n \ln n}$ then clearly $Z_{i} \leq \sqrt{4 n \ln n}$.

If $k>\sqrt{4 n \log n}$, the k non-zero terms in the sum Z_{i} are independent random variables, each with probability $1 / 2$ of being either +1 or -1 .
Using the Chernoff bound:

$$
\operatorname{Pr}\left\{\left|Z_{i}\right|>\sqrt{4 n \log n}\right\} \leq 2 e^{-4 n \log n /(2 k)} \leq 2 e^{-4 n \log n /(2 n)} \leq \frac{2}{n^{2}}
$$

where we use the fact that $n \geq k$.
The result follows by union bound on the n rows.

Hoeffding's Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding's Inequality)

Let X_{1}, \ldots, X_{n} be independent random variables such that for all $1 \leq i \leq n, E\left[X_{i}\right]=\mu$ and $\operatorname{Pr}\left(a \leq X_{i} \leq b\right)=1$. Then

$$
\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2} /(b-a)^{2}}
$$

Lemma

(Hoeffding's Lemma) Let X be a random variable such that $\operatorname{Pr}(X \in[a, b])=1$ and $E[X]=0$. Then for every $\lambda>0$,

$$
\mathrm{E}\left[E^{\lambda X}\right] \leq e^{\lambda^{2}(a-b)^{2}} / 8
$$

Proof of the Lemma

Since $f(x)=e^{\lambda x}$ is a convex function, for any $\alpha \in(0,1)$ and $x \in[a, b]$,

$$
f(X) \leq \alpha f(a)+(1-\alpha) f(b) .
$$

Thus, for $\alpha=\frac{b-x}{b-a} \in(0,1)$,

$$
e^{\lambda x} \leq \frac{b-x}{b-a} e^{\lambda a}+\frac{x-a}{b-a} e^{\lambda b} .
$$

Taking expectation, and using $\mathrm{E}[X]=0$, we have

$$
E\left[e^{\lambda X}\right] \leq \frac{b}{b-a} e^{\lambda a}+\frac{a}{b-a} e^{\lambda b} \leq e^{\lambda^{2}(b-a)^{2} / 8}
$$

Proof of the Bound

Let $Z_{i}=X_{i}-\mathrm{E}\left[X_{i}\right]$ and $Z=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

$$
\operatorname{Pr}(Z \geq \epsilon) \leq e^{-\lambda \epsilon} \mathrm{E}\left[e^{\lambda Z}\right] \leq e^{-\lambda \epsilon} \prod_{i=1}^{n} \mathrm{E}\left[e^{\lambda X_{i} / n}\right] \leq e^{-\lambda \epsilon+\frac{\lambda^{2}(b-a)^{2}}{8 n}}
$$

Set $\lambda=\frac{4 n \epsilon}{(b-a)^{2}}$ gives

$$
\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right)=\operatorname{Pr}(Z \geq \epsilon) \leq 2 e^{-2 n \epsilon^{2} /(b-a)^{2}}
$$

A More General Version

Theorem

Let X_{1}, \ldots, X_{n} be independent random variables with $\mathrm{E}\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Pr}\left(B_{i} \leq X_{i} \leq B_{i}+c_{i}\right)=1$, then

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \mu_{i}\right| \geq \epsilon\right) \leq 2 e^{-\frac{2 \epsilon^{2}}{\sum_{i=1}^{\epsilon_{i}^{2}}}}
$$

Application: Job Completion

We have n jobs, job i has expected run-time μ_{i}. We terminate job i if it runs $\beta \mu_{i}$ time. When will the machine will be free of jobs? $X_{i}=$ execution time of job $i .0 \leq X_{i} \leq \beta \mu_{i}$.

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \mu_{i}\right| \geq \epsilon \sum_{i=1}^{n} \mu_{i}\right) \leq 2 e^{-\frac{2 \epsilon^{2}\left(\sum_{i=1}^{n} \mu_{i}\right)^{2}}{\sum_{i=1}^{n} \beta^{2} \mu_{i}^{2}}}
$$

Assume all $\mu_{i}=\mu$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} X_{i}-n \mu\right| \geq \epsilon n \mu\right) \leq 2 e^{-\frac{2 \epsilon^{2} n^{2} \mu^{2}}{n \beta^{2} \mu^{2}}}=2 e^{-2 \epsilon^{2} n / \beta^{2}}
$$

Let $\epsilon=\beta \sqrt{\frac{\log n}{n}}$, then

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} X_{i}-n \mu\right| \geq \beta \mu \sqrt{n \log n}\right) \leq 2 e^{-\frac{2 \beta^{2} \mu^{2} n \log n}{n \beta^{2} \mu^{2}}}=\frac{2}{n^{2}}
$$

