CS155/254: Probabilistic Methods in Computer Science

Chapter 4.1: Large Deviation Bounds

Large Deviation Bounds

A typical probability theory statement:

Theorem (The Central Limit Theorem)

Let X_1, \ldots, X_n be independent identically distributed random variables with common mean μ and variance σ^2 . Then

$$\lim_{n\to\infty} \Pr(\frac{\frac{1}{n}\sum_{i=1}^n X_i - \mu}{\sigma/\sqrt{n}} \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt.$$

A typical CS probabilistic tool:

Theorem (Chernoff Bound)

Let $X_1, ..., X_n$ be independent Bernoulli random variables such that $Pr(X_i = 1) = p_i$. Let $\mu = \frac{1}{n} \sum_{i=1}^{n} p_i$, then

$$Pr(\frac{1}{n}\sum_{i=1}^n X_i \geq (1+\delta)\mu) \leq e^{-\mu n\delta^2/3}.$$

Chernof Bound - Large Deviation Bound

Theorem

Let X_1, \ldots, X_n be independent, 0-1 random variables with $Pr(X_i=1)=E[X_i]=p_i$. Let $\mu=\sum_{i=1}^n p_i$, then for any $\delta\in[0,1]$ we have

$$Prob(\sum_{i=1}^n X_i \geq (1+\delta)\mu) \leq e^{-\mu\delta^2/3}$$

and

$$Prob(\sum_{i=1}^n X_i \leq (1-\delta)\mu) \leq e^{-\mu\delta^2/2}.$$

Consider n coin flips. Let X be the number of heads. Markov Inequality gives

$$Pr\left(X \ge \frac{3n}{4}\right) \le \frac{n/2}{3n/4} \le \frac{2}{3}.$$

Using the Chebyshev's bound we have:

$$Pr\left(\left|X-\frac{n}{2}\right|\geq\frac{n}{4}\right)\leq\frac{4}{n}.$$

Using the Chernoff bound in this case, we obtain

$$Pr\left(\left|X - \frac{n}{2}\right| \ge \frac{n}{4}\right) = Pr\left(X \ge \frac{n}{2}\left(1 + \frac{1}{2}\right)\right) + Pr\left(X \le \frac{n}{2}\left(1 - \frac{1}{2}\right)\right)$$

$$< e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} + e^{-\frac{1}{2}\frac{n}{2}\frac{1}{4}} < 2e^{-\frac{n}{24}}.$$

The Basic Idea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have: For any t > 0,

$$Pr(X \ge a) = Pr(e^{tX} \ge e^{ta}) \le \frac{\mathsf{E}[e^{tX}]}{e^{ta}}.$$

Similarly, for any t < 0

$$Pr(X \le a) = Pr(e^{tX} \ge e^{ta}) \le \frac{\mathsf{E}[e^{tX}]}{e^{ta}}.$$

Theorem (Markov Inequality)

If a random variable X is non-negative $(X \ge 0)$ then

$$Prob(X \ge a) \le \frac{E[X]}{a}$$
.

The General Scheme:

For any random variable X:

- 1 computing $E[e^{tX}]$
- optimize

$$Pr(X \ge a) \le \min_{t>0} \frac{\mathsf{E}[e^{tX}]}{e^{ta}}$$

 $Pr(X \le a) \le \min_{t<0} \frac{\mathsf{E}[e^{tX}]}{e^{ta}}.$

3 symplify

Moment Generating Function

Definition

The moment generating function of a random variable X is defined for any real value t as

$$M_X(t) = \mathsf{E}[e^{tX}].$$

Theorem

Let X be a random variable with moment generating function $M_X(t)$. Assuming that exchanging the expectation and differentiation operands is legitimate, then for all $n \geq 1$

$$\mathsf{E}[X^n] = M_X^{(n)}(0),$$

where $M_X^{(n)}(0)$ is the n-th derivative of $M_X(t)$ evaluated at t=0.

Proof.

$$M_X^{(n)}(t) = \mathsf{E}[X^n e^{tX}].$$

Computed at t = 0 we get

$$M_X^{(n)}(0) = \mathsf{E}[X^n].$$

Why we can switch the order of the derivative and the expectation? Assume for simplicity that X has integer values. Let D(X) be the domain of X.

$$M_X(t) = E[e^{tX}] = \sum_{i \in D(X)} e^{ti} Pr(X = i).$$

For finite or uniformly convergent sum:

$$M_X^{(1)}(t) = \frac{d}{dt}E[e^{tX}] = \frac{d}{dt}\left(\sum_{i \in D(X)} e^{ti}Pr(X=i)\right)$$
$$= \sum_{i \in D(X)} \frac{d}{dt}e^{ti}Pr(X=i) = E[\frac{d}{dt}e^{ti}]$$

Theorem

Let X and Y be two random variables. If

$$M_X(t) = M_Y(t)$$

for all $t \in (-\delta, \delta)$ for some $\delta > 0$, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables then

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

Proof.

$$M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t).$$

Chernoff Bound for Sum of Bernoulli Trials

Theorem

Let $X_1, ..., X_n$ be independent Bernoulli random variables such that $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \sum_{i=1}^n p_i$.

• For any $\delta > 0$,

$$Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$
 (1)

• For $0 < \delta < 1$.

$$Pr(X \ge (1+\delta)\mu) \le e^{-\mu\delta^2/3}.$$
 (2)

• For $R > 6\mu$,

$$Pr(X \ge R) \le 2^{-R}. (3)$$

Chernoff Bound for Sum of Bernoulli Trials

Let X_1, \ldots, X_n be a sequence of independent Bernoulli trials with $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$, and let

$$\mu = E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p_i.$$

For each X_i :

$$egin{array}{lcl} M_{X_i}(t) & = & {\sf E}[e^{tX_i}] \ & = & p_i e^t + (1-p_i) \ & = & 1+p_i(e^t-1) \ & \leq & e^{p_i(e^t-1)}. \end{array}$$

$$M_{X_i}(t) = \mathsf{E}[e^{tX_i}] \leq e^{p_i(e^t-1)}.$$

Taking the product of the *n* generating functions we get for $X = \sum_{i=1}^{n} X_i$

$$M_X(t) = \prod_{i=1}^n M_{X_i}(t)$$

$$\leq \prod_{i=1}^n e^{p_i(e^t - 1)}$$

$$= e^{\sum_{i=1}^n p_i(e^t - 1)}$$

$$= e^{(e^t - 1)\mu}$$

$$M_X(t) = E[e^{tX}] = e^{(e^t - 1)\mu}$$

Applying Markov's inequality we have for any t > 0

$$\begin{array}{lcl} Pr(X \geq (1+\delta)\mu) & = & Pr(e^{tX} \geq e^{t(1+\delta)\mu}) \\ & \leq & \frac{\mathsf{E}[e^{tX}]}{e^{t(1+\delta)\mu}} \\ & \leq & \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}} \end{array}$$

For any $\delta > 0$, we can set $t = \ln(1 + \delta) > 0$ to get:

$$Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

This proves (1).

We show that for $0 < \delta < 1$,

$$\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\delta^2/3}$$

or that $f(\delta) = \delta - (1 + \delta) \ln(1 + \delta) + \delta^2/3 \le 0$ in that interval. Computing the derivatives of $f(\delta)$ we get

$$f'(\delta) = 1 - \frac{1+\delta}{1+\delta} - \ln(1+\delta) + \frac{2}{3}\delta = -\ln(1+\delta) + \frac{2}{3}\delta,$$

$$f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3}.$$

 $f''(\delta) < 0$ for $0 \le \delta < 1/2$, and $f''(\delta) > 0$ for $\delta > 1/2$. $f'(\delta)$ first decreases and then increases over the interval [0,1]. Since f'(0) = 0 and f'(1) < 0, $f'(\delta) \le 0$ in the interval [0,1]. Since f(0) = 0, we have that $f(\delta) \le 0$ in that interval. This proves (2).

For $R \geq 6\mu$, $\delta \geq 5$.

$$Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$$

 $\le \left(\frac{e}{6}\right)^{R}$
 $\le 2^{-R},$

that proves (3).

Theorem

Let $X_1, ..., X_n$ be independent Bernoulli random variables such that $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. For $0 < \delta < 1$:

•

$$Pr(X \le (1-\delta)\mu) \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}.$$
 (4)

•

$$Pr(X \le (1 - \delta)\mu) \le e^{-\mu\delta^2/2}.$$
 (5)

Using Markov's inequality, for any t < 0,

$$Pr(X \le (1 - \delta)\mu) = Pr(e^{tX} \ge e^{(1 - \delta)t\mu})$$

$$\le \frac{E[e^{tX}]}{e^{t(1 - \delta)\mu}}$$

$$\le \frac{e^{(e^t - 1)\mu}}{e^{t(1 - \delta)\mu}}$$

For $0 < \delta < 1$, we set $t = \ln(1 - \delta) < 0$ to get:

$$Pr(X \leq (1-\delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$$

This proves (4).

We need to show:

$$f(\delta) = -\delta - (1 - \delta)\ln(1 - \delta) + \frac{1}{2}\delta^2 \le 0.$$

We need to show:

$$f(\delta) = -\delta - (1 - \delta)\ln(1 - \delta) + \frac{1}{2}\delta^2 \le 0.$$

Differentiating $f(\delta)$ we get

$$f'(\delta) = \ln(1-\delta) + \delta,$$

 $f''(\delta) = -\frac{1}{1-\delta} + 1.$

Since $f''(\delta) < 0$ for $\delta \in (0,1)$, $f'(\delta)$ decreasing in that interval. Since f'(0) = 0, $f'(\delta) \le 0$ for $\delta \in (0,1)$. Therefore $f(\delta)$ is non increasing in that interval.

f(0) = 0. Since $f(\delta)$ is non increasing for $\delta \in [0,1)$, $f(\delta) \leq 0$ in that interval, and (5) follows.

Example: Coin flips

Theorem (The Central Limit Theorem)

Let X_1, \ldots, X_n be independent identically distributed random variables with common mean μ and variance σ^2 . Then

$$\lim_{n\to\infty} \Pr(\frac{\frac{1}{n}\sum_{i=1}^n X_i - \mu}{\sigma/\sqrt{n}} \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt.$$

$$\Phi(2.23) = 0.99$$
, thus, $\lim_{n \to \infty} Pr(\frac{\frac{1}{n} \sum_{i=1}^{n} X_i - \mu}{\sigma/\sqrt{n}} \le 2.23) = 0.99$ For coin flips:

$$\lim_{n \to \infty} \Pr\left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_i - 1/2}{1/(2\sqrt{n})} \le 2.23\right) = 0.99$$

$$\lim_{n \to \infty} \Pr\left(\sum_{i=1}^{n} X_i - \frac{n}{2} \ge 2.23\sqrt{n}/2\right) = 0.01$$

$$\Phi(3.5) \approx 0.999$$
, $\lim_{n\to\infty} Pr(\sum_{i=1}^n X_i - \frac{n}{2} \ge 3.5\sqrt{n}/2) = 0.001$

Example: Coin flips

Let X be the number of heads in a sequence of n independent fair coin flips.

$$Pr\left(\left|X - \frac{n}{2}\right| \ge \frac{1}{2}\sqrt{6n\ln n}\right)$$

$$= Pr\left(X \ge \frac{n}{2}\left(1 + \sqrt{\frac{6\ln n}{n}}\right)\right)$$

$$+Pr\left(X \le \frac{n}{2}\left(1 - \sqrt{\frac{6\ln n}{n}}\right)\right)$$

$$\leq e^{-\frac{1}{3}\frac{n}{2}\frac{6\ln n}{n}} + e^{-\frac{1}{2}\frac{n}{2}\frac{6\ln n}{n}} \leq \frac{2}{n}.$$

Note that the standard deviation is $\sqrt{n/4}$

Example: estimate the value of π

- Choose X and Y independently and uniformly at random in [0, 1].
- Let

$$Z = \begin{cases} 1 & \text{if } \sqrt{X^2 + Y^2} \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

- $\frac{1}{2} \le p = \Pr(Z = 1) = \frac{\pi}{4} \le 1$.
- $4E[Z] = \pi$.

• Let Z_1, \ldots, Z_m be the values of m independent experiments. $W_m = \sum_{i=1}^m Z_i$.

$$E[W_m] = E\left[\sum_{i=1}^m Z_i\right] = \sum_{i=1}^m E[Z_i] = \frac{m\pi}{4},$$

- $\tilde{\pi}_m = \frac{4}{m} W_m$ is an unbiased estimate for π (i.e. $E[\tilde{\pi}_m] = \pi$)
- How many samples do we need to obtain a good estimate?

$$\begin{split} \Pr(|\tilde{\pi}_m - \pi| \geq \epsilon \pi) &= \Pr\left(|W - \frac{m\pi}{4}| \geq \frac{\epsilon m\pi}{4}\right) \\ &= \Pr\left(|W_m - \operatorname{E}[W_m]| \geq \epsilon \operatorname{E}[W_m]\right) \\ &= \Pr\left(W_m - \operatorname{E}[W_m] \geq \epsilon \operatorname{E}[W_m]\right) + \Pr\left(W_m - \operatorname{E}[W_m] \leq \epsilon \operatorname{E}[W_m]\right) \\ &\leq \mathrm{e}^{-\frac{1}{3}\frac{m\pi}{4}\epsilon^2} + \mathrm{e}^{-\frac{1}{2}\frac{m\pi}{4}\epsilon^2} \leq 2\mathrm{e}^{-\frac{1}{12}m\pi\epsilon^2}. \end{split}$$

Since it's easy to verify that $\pi > 2$

$$\Pr(|\tilde{\pi}_m - \pi| \ge \epsilon \pi) \le 2e^{-\frac{1}{12}m\pi\epsilon^2} \le e^{-\frac{1}{6}m\epsilon^2} = \delta$$

For $\epsilon = 0.1$ and $\delta = 0.01$ we need m > 4000.

Set Balancing

Given an $n \times n$ matrix \mathcal{A} with entries in $\{0,1\}$, let

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix}.$$

Find a vector \bar{b} with entries in $\{-1,1\}$ that minimizes

$$||\mathcal{A}\bar{b}||_{\infty} = \max_{i=1,\dots,n} |c_i|.$$

Theorem

For a random vector $\overline{\mathbf{b}}$, with entries chosen independently and with equal probability from the set $\{-1,1\}$,

$$Pr(||\mathcal{A}\bar{b}||_{\infty} \geq \sqrt{4n\ln n}) \leq \frac{2}{n}.$$

The $\sum_{i=1}^{n} a_{j,i}b_i$ (excluding the zero terms) is a sum of independent -1,1 random variable. We need a bound on such sum.

Chernoff Bound for Sum of $\{-1, +1\}$ Random Variables

Theorem

Let $X_1, ..., X_n$ be independent random variables with

$$Pr(X_i = 1) = Pr(X_i = -1) = \frac{1}{2}.$$

Let $X = \sum_{i=1}^{n} X_i$. For any a > 0,

$$Pr(X \ge a) \le e^{-\frac{a^2}{2n}}.$$

de Moivre – Laplace approximation: For any k, such that $|k - np| \le a$

$$\binom{n}{k} p^k (1-p)^{n-k} pprox \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{a^2}{2np(1-p)}}$$

For any t > 0,

$$\mathsf{E}[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}.$$

$$e^{t} = 1 + t + \frac{t^{2}}{2!} + \dots + \frac{t'}{i!} + \dots$$

and

$$e^{-t} = 1 - t + \frac{t^2}{2!} + \dots + (-1)^i \frac{t^i}{i!} + \dots$$

Thus,

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \sum_{i \ge 0} \frac{t^{2i}}{(2i)!}$$

$$\le \sum_{i \ge 0} \frac{(\frac{t^2}{2})^i}{i!} = e^{t^2/2}$$

$$\mathsf{E}[e^{tX}] = \prod_{i=1}^n \mathsf{E}[e^{tX_i}] \le e^{nt^2/2},$$

$$Pr(X \ge a) = Pr(e^{tX} > e^{ta}) \le \frac{\mathsf{E}[e^{tX}]}{e^{ta}} \le e^{t^2n/2-ta}.$$

Setting t = a/n yields

$$Pr(X \ge a) \le e^{-\frac{a^2}{2n}}.$$

By symmetry we also have

Corollary

Let $X_1, ..., X_n$ be independent random variables with

$$Pr(X_i = 1) = Pr(X_i = -1) = \frac{1}{2}.$$

Let
$$X = \sum_{i=1}^{n} X_i$$
. Then for any $a > 0$,

$$Pr(|X| > a) \leq 2e^{-\frac{a^2}{2n}}.$$

Application: Set Balancing

$\mathsf{Theorem}$

For a random vector \overline{b} , with entries chosen independently and with equal probability from the set $\{-1,1\}$,

$$Pr(||\mathcal{A}\bar{b}||_{\infty} \ge \sqrt{4n\ln n}) \le \frac{2}{n}$$
 (6)

- Consider the *i*-th row $\bar{a}_i = a_{i,1}, ..., a_{i,n}$.
- Let k be the number of 1's in that row.
- $Z_i = \sum_{j=1}^k a_{i,i_j} b_{i_j}$.
- If $k \le \sqrt{4n \ln n}$ then clearly $Z_i \le \sqrt{4n \ln n}$.

If $k > \sqrt{4n \log n}$, the k non-zero terms in the sum Z_i are independent random variables, each with probability 1/2 of being either +1 or -1.

Using the Chernoff bound:

$$Pr\left\{|Z_i| > \sqrt{4n\log n}\right\} \le 2e^{-4n\log n/(2k)} \le 2e^{-4n\log n/(2n)} \le \frac{2}{n^2},$$

where we use the fact that $n \geq k$.

The result follows by union bound on the n rows.

Hoeffding's Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_n$ be independent random variables such that for all $1 \le i \le n$, $E[X_i] = \mu$ and $Pr(a \le X_i \le b) = 1$. Then

$$Pr(|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu|\geq\epsilon)\leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}$$

Lemma

(Hoeffding's Lemma) Let X be a random variable such that $Pr(X \in [a, b]) = 1$ and E[X] = 0. Then for every $\lambda > 0$,

$$\mathsf{E}[E^{\lambda X}] \le e^{\lambda^2(a-b)^2}/8.$$

Proof of the Lemma

Since $f(x) = e^{\lambda x}$ is a convex function, for any $\alpha \in (0,1)$ and $x \in [a,b]$,

$$f(X) \le \alpha f(a) + (1 - \alpha)f(b).$$

Thus, for $\alpha = \frac{b-x}{b-a} \in (0,1)$,

$$e^{\lambda x} \le \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b}.$$

Taking expectation, and using E[X] = 0, we have

$$E[e^{\lambda X}] \le \frac{b}{b-a}e^{\lambda a} + \frac{a}{b-a}e^{\lambda b} \le e^{\lambda^2(b-a)^2/8}.$$

Proof of the Bound

Let
$$Z_i = X_i - E[X_i]$$
 and $Z = \frac{1}{n} \sum_{i=1}^n X_i$.

$$Pr(Z \ge \epsilon) \le e^{-\lambda \epsilon} \mathsf{E}[e^{\lambda Z}] \le e^{-\lambda \epsilon} \prod_{i=1}^n \mathsf{E}[e^{\lambda X_i/n}] \le e^{-\lambda \epsilon + \frac{\lambda^2 (b-a)^2}{8n}}$$

Set
$$\lambda = \frac{4n\epsilon}{(b-a)^2}$$
 gives

$$Pr(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq\epsilon)=Pr(Z\geq\epsilon)\leq2e^{-2n\epsilon^{2}/(b-a)^{2}}$$

A More General Version

Theorem

Let $X_1, ..., X_n$ be independent random variables with $E[X_i] = \mu_i$ and $Pr(B_i \le X_i \le B_i + c_i) = 1$, then

$$Pr(|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i| \ge \epsilon) \le 2e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}}$$

Application: Job Completion

We have n jobs, job i has expected run-time μ_i . We terminate job i if it runs $\beta \mu_i$ time. When will the machine will be free of jobs? $X_i =$ execution time of job i. $0 \le X_i \le \beta \mu_i$.

$$Pr(|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i| \ge \epsilon \sum_{i=1}^{n} \mu_i) \le 2e^{-\frac{2\epsilon^2(\sum_{i=1}^{n} \mu_i)^2}{\sum_{i=1}^{n} \beta^2 \mu_i^2}}$$

Assume all $\mu_i = \mu$

$$Pr(|\sum_{i=1}^{n} X_i - n\mu| \ge \epsilon n\mu) \le 2e^{-\frac{2\epsilon^2 n^2 \mu^2}{n\beta^2 \mu^2}} = 2e^{-2\epsilon^2 n/\beta^2}$$

Let
$$\epsilon = \beta \sqrt{\frac{\log n}{n}}$$
, then

$$Pr(|\sum_{i=1}^{n} X_i - n\mu| \ge \beta \mu \sqrt{n \log n}) \le 2e^{-\frac{2\beta^2 \mu^2 n \log n}{n\beta^2 \mu^2}} = \frac{2}{n^2}$$