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Large Deviation Bounds
A typical probability theory statement:
Theorem (The Central Limit Theorem)

Let Xi,...,X, be independent identically distributed random
variables with common mean ji and variance 0. Then

1 Z” 2 — U 1 z )
lim Pr(2==1"C — =— —t/24t.
jm P2t <= [ e

A typical CS probabilistic tool:
Theorem (Chernoff Bound)

Let Xi,...,X, be independent Bernoulli random variables such
that PI’(X,' = 1) = p;. Let p = %27:1 pi, then

1« "
Pr(=Y " X; > (14 0)p) < e #m°/3,
r(”,-El >(1+du)<e
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Chernof Bound - Large Deviation Bound

Theorem

Let Xi,...,X, be independent, 0 — 1 random variables with
Pr(X; =1) = E[X;] = pi. Let pu =" "_; pi, then for any § € [0,1]
we have .
Prob(z Xi>(1+0)p) < ehe/3
i=1
and .
Prob(3" X < (1 - 8)u) < e #/2,
i=1

3/1



Consider n coin flips. Let X be the number of heads.
Markov Inequality gives

3n n/2 2
PriX>—)< -
< )_3n/4_3

Using the Chebyshev's bound we have:

n 4
—) < =
4) ~n

Using the Chernoff bound in this case, we obtain
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The Basic ldea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:
For any t > 0,

E[etX]
_ tX ta
Pr(X > a) = Pr(e” > &%) < RE
Similarly, for any t < 0
E tX
Pr(X < a) = Pr(e™ > e%?) < [eeta ]

Theorem (Markov Inequality)

If a random variable X is non-negative (X > 0) then

Prob(X > a) < E[aX].
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The General Scheme:

For any random variable X:

® computing E[e]
® optimize
E[etX]
Pr(X > [
X =a)<mh e
E[etX]
Pr(X < i
" )< t<|8 etd
© symplify
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Moment Generating Function

Definition
The moment generating function of a random variable X is defined
for any real value t as

Mx (t) = E[e™].
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Theorem

Let X be a random variable with moment generating function
Mx (t). Assuming that exchanging the expectation and
differentiation operands is legitimate, then for all n > 1

EX7] = M(0),
where M&")(O) is the n-th derivative of Mx(t) evaluated at t = 0.

Proof.

MP(t) = E[X"e™].

Computed at t = 0 we get

M{)(0) = E[X7.
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Why we can switch the order of the derivative and the expectation?

Assume for simplicity that X has integer values. Let D(X) be the
domain of X.

Mx(t) = E[e™]= > e"Pr(X =i).
ieD(X)

For finite or uniformly convergent sum:

MP () = %E[etx]:% S etPr(x =)
ieD(X)
_ d i o i ti
= Z 7€ Pr(Xfl)fE[dte |
ieD(X)
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Theorem
Let X and Y be two random variables. If

Mx(t) = My(t)

for all t € (—0,0) for some § > 0, then X and Y have the same
distribution.

Theorem

If X and Y are independent random variables then

Mx 1y (t) = Mx(t)My(t).

Mx 1y (t) = E[efXTY)] = E[e™X|E[e!Y] = Mx(t)My (t).

O
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Chernoff Bound for Sum of Bernoulli Trials

Theorem
Let Xi,..., X, be independent Bernoulli random variables such
that Pr(X; =1) =p;. Let X =37, Xi and p= >, pi.

® foranyd >0,

PHX > (1+ 6)p) < (W) | (1)
e For0< o<1,
Pr(X > (1+68)p) < e H0°/3 (2)

® For R > 6y,
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Chernoff Bound for Sum of Bernoulli Trials

Let Xi,...,X, be a sequence of independent Bernoulli trials with

Pr(Xi =1) = p;. Let X =", Xj, and let

p=E[X]=E

For each X;:

> %
i=1

n

i=1

E[etX"]

piet + (1 — pi)
1+ pi(ef —1)
epi(e’=1)

=> E[X]= .
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Mx,(t) = E[e™] < ePi(e~1),

Taking the product of the n generating functions we get for
X = 27:1 Xi

Mx(t) = ﬁ Mx(t)
i=1

n

< H ePi(e’=1)

i=1
_ eXilip(e-1)

— e(et_l)u
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Mx(t) = E[e™] = (&1

Applying Markov's inequality we have for any t > 0

Pr(X > (1+06)u) = Pr(eX > et(+on)
_ E[etX]
- et(l+o)u
elet=1)u
S @

For any 6 > 0, we can set t = In(1+ §) > 0 to get:

0 ©

This proves (1).
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We show that for 0 < § < 1,
e‘s < 752/3
(14 6)2+0) =

or that f(6)=6—(1+0)In(1+6)+62/3<0
in that interval. Computing the derivatives of 7(J) we get

ey — g 1t0 2, 2
F(0) = 1= s —In(l+0)+ 36 =—In(1+3)+ 3.
1 2
f/l _ —.
(9) 140 3

f7(6) < 0for0<¢d<1/2, and f"(5) >0 for § > 1/2.

f'(0) first decreases and then increases over the interval [0, 1].
Since f/(0) = 0 and (1) < 0, /() < 0 in the interval [0, 1].
Since f(0) = 0, we have that f(J) < 0 in that interval.

This proves (2).
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For R > 6u, 6 > 5.

Pr(X > (1+ 8)p)

N
Y
>+
>4 | D
~ ©
=
+
)
N—
=

(VAN
N —

IN

that proves (3).
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Theorem

Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; =1) = p;. Let X =37 X; and pn = E[X].
For0 <9< 1:

- 1
Pr(X < (1-10)p) < <(1_5)(1_5)> : (4)

Pr(X < (1—68)u) < e H%/2, (5)
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Using Markov's inequality, for any t < 0,

Pr(X <(1—08)u) = Pr(eX > ell=0tn)
_ E[etX]
- et(1-0)u
ele'=1)u
= et(1=0)u

For0 <o <1, wesett=In(1-0)<0 to get:
ot p
Pr(X < (1=06)u) < <(15)(15)>

This proves (4).
We need to show:

F(0) = =6 — (1 —98)In(1 —0) + %52 <0.
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We need to show:

f(0) = -6 —(1—10)In(1—0)+ %52 <0.

Differentiating 7 (J) we get

F(5) = In(1—36)+3,
f'(6) = ———=+1.

Since () < 0 for 6 € (0,1), /(9) decreasing in that interval.

Since f'(0) =0, f'(0) <0 for § € (0,1). Therefore () is non

increasing in that interval.

f(0) = 0. Since () is non increasing for § € [0,1), f(J) <0 in
that interval, and (5) follows.
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Example: Coin flips

Theorem (The Central Limit Theorem)

Let Xi,...,X, be independent identically distributed random
variables with common mean ji and variance 0. Then

1 n
s X
lim Pr(Z 2=t &

1 z 2
nis=ltl P ooy = /24
i) T . /oo ¢

— ; %Z?:l Xi—p —
®(2.23) = 0.99, thus, lim,_,~ Pr(ﬁ <2.23)=0.99

For coin flips:

15 L
iMoo Pr("%’/:(;if/’;)l/z < 2.23) = 0.99
limp oo PP, X; — 2 > 2.23y/n/2) = 0.01

®(3.5) ~ 0.999, limy_se0 Pr(30; X; — 2 >3.5¢/n/2) = 0.001
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Example: Coin flips

Let X be the number of heads in a sequence of n independent fair

coin flips.
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Note that the standard deviation is \/n/4
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Example: estimate the value of 7

N
\

/

® Choose X and Y independently and uniformly at random in

[0, 1].
® |et
S 1 ifVXTEYI<,
| 0 otherwise,

1
2
° 4E[Z] = .
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Let Z1,...,Z,, be the values of m independent experiments.
Wn=>"172.

m

>z

i=1

E[W] = E

~ mT
= ; E[Z,] — T,

® %, = 2 Wy, is an unbiased estimate for 7 (i.e. E[f,] =)

® How many samples do we need to obtain a good estimate?
a1 = pr(w 12 )

= Pr(|Wp, — E[W,]| > eE[W,])
= Pr(Wp — E[W,,] > eE[W,]) + Pr(W,, — E[W,,] < eE[W,,])
< ef%% ’ + efé%g < 2efﬁm7r62_
Since it's easy to verify that 7 > 2

Pr([fm — | > em) < 20" M€ < ¢=4m — 5

For ¢ = 0.1 and § = 0.01 we need m > 4000.
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Set Balancing

Given an n x n matrix A with entries in {0, 1}, let

da11 di12 ... din b1 (o]
ani ano aon b2 ()
anl am2 ... ann by Cn

Find a vector b with entries in {—1,1} that minimizes

MABll, = max ci|.

ey
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Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

= 2
Pr(||Ab||co > V4nInn) < —
n

The >°7 ; ajib; (excluding the zero terms) is a sum of independent
—1.1 random variable. We need a bound on such sum.
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Chernoff Bound for Sum of {—1,+41} Random
Variables

Theorem

Let Xi,..., X, be independent random variables with
1
Pr(X;=1) = Pr(X; = —-1) = 5

Let X = 7 X;. Foranya>0,

22

Pr(X > a) < e 5.

de Moivre — Laplace approximation: For any k, such that
|k —np| < a

<n> pk(l — p)n_k ~ ;eibm(affp)
k 27np(1 — p)
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For any t > 0,

1
E[etX,-] o + 7e—t
2
t2 t
e =1+t+—+-
2! 1
and .
1.'2 ,_tl
et =1ttt (C) S+
Thus,
I
A A - (2i)!

IA

—~~

=™
N

»

N

~

N
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E[e™] = [ E[e™] < e/,
i=1

E tX
Pr(X 2 a) = Pr(etX > eta) S y S etzn/Z—ta‘
e a
Setting t = a/n yields

22

Pr(X > a) <e .
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By symmetry we also have

Corollary
Let Xi, ..., X,, be independent random variables with

1
Pr(X,- = 1) = Pr(X,- = —1) = 5

Let X = " | X;. Then for any a > 0,

2

Pr(|X| > a) < 2e” .
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Application: Set Balancing

Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1.1},

Pr(||AB|| > Vaninn) < > (6)

S

Consider the i-th row a; = a;1,..... aj .
Let k be the number of 1's in that row.

= 31 aibi
If kK < +/4nlnn then clearly Z; < Vanlnn.
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If kK > +/4nlog n, the k non-zero terms in the sum Z; are
independent random variables, each with probability 1/2 of being
either +1 or —1.

Using the Chernoff bound:

2

Pr{\z/, > /4n|0gn} < 2e74n|ogn/(2k) < 2e74n|ogn/(2n) < =,

n

where we use the fact that n > k.
The result follows by union bound on the n rows.
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Hoeffding's Inequality
Large deviation bound for more general random variables:
Theorem (Hoeffding's Inequality)

Let Xi,...,X, be independent random variables such that for all
1<i<n, E[Xj]=pand Pr(a< X; <b)=1. Then

1 n
Pr(l- 37X — | > €) < 2e72ne/(b=a)
i=1

Lemma

(Hoeffding's Lemma) Let X be a random variable such that
Pr(X € [a,b]) =1 and E[X] = 0. Then for every X\ > 0,

E[E)\X] < e/\2(afb)2/8'
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Proof of the Lemma

Since f(x) = ™ is a convex function, for any o € (0,1) and
x € [a, b],
X) < af(a) + (1 — a)f(b).

f(
Thus, for o = 2= € (0,1),

b—x X —a

AX Aa b

e < —e 4 —e™".
b—a b—a

Taking expectation, and using E[X] = 0, we have

E[e)\X] < bfae/\a 4 biae/\b < N (b—a)?/8
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Proof of the Bound

Let Z = X; —E[X{]and Z = 13" | X

A2(b—a)?
8n

n
Pr(Z > 6) < ef)\eE[e/\Z] < ef)\EHE[e)\X;/n] < ef)\e+
i=1

Set A = ( )2 gives

1 — 2 2
P 75 Xi — | > €) = Pr(Z > €) < 2¢2n¢’/(b=2)
f(|n'7 pl =€) r(Z>e€) <2e
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A More General Version

Theorem
Let Xi,..., X, be independent random variables with E[X;| = p;
and Pr(B; < X; < Bj+¢;) =1, then

2¢2

n n
PrIY_Xi = Do mil 2 @) <2¢ e
i=1 i=1
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Application: Job Completion

We have n jobs, job i has expected run-time ;. We terminate job
i if it runs Su; time. When will the machine will be free of jobs?
X; = execution time of job /. 0 < X; < Bpu;.

22(20y mi)?

ZONE Zu,\>eZu, <2e R
i=1

Assume all uj = p

252 n2;L2

|ZX — np| > enp) < 2e BT = 2e—2¢°n/3?
i=1

Let e = 3 Iog" , then

2,82;1,2n|0gn 2

Pr(1>_ Xi — np| > Buy/nlogn) < 2e” o2 = =5
i=1

n2
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