
CS155/254: Probabilistic Methods in
Computer Science

Chapter 4.2: Packet routing on an hypercube network
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Packet Routing on Parallel Computer

Communication network:
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Packet Routing on Parallel Computer

Communication network:

• nodes - processors, switching nodes;

• edges - communication links.
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Model and Computational problem

• An edge (v ,w) corresponds to two directed edge, v → w and
w → v .

• Up to one packet can cross an edge per step, each packet can
cross up to one edge per step.

• A permutation communication request: each node is the
source and destination of exactly one packet.

• What is the time to route an arbitrary permutation on an N
node network?
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The n-cube

The 3-cube:

The 4-cube:
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The n-cube

The n-cube:
N = 2n nodes: 0, 1, 2, . . . , 2n − 1.

Let x̄ = (x1, ..., xn) be the number of node x in binary.

Nodes x and y are connected by an edge iff their binary
representations differ in exactly one bit.

Bit-wise routing: correct bit i in the i-th transition - route has
length ≤ n.
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The Butterfly Network
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The n-cube

The n-cube:
N = 2n nodes: 0, 1, 2, . . . , 2n − 1.

Let x̄ = (x1, ..., xn) be the number of node x in binary.

Nodes x and y are connected by an edge iff their binary
representations differ in exactly one bit.

Bit-wise routing: correct bit i in the i-th transition - route has
length ≤ n.

Problem: Assume that a packet from (x1, . . . , xn/2, 0, 0, . . . , 0) is
routed to (0, 0, . . . , 0, x1, . . . , xn/2), for all possible assignments of
x1, . . . , xn/2.

We have 2n/2 =
√
N packets traversing node (0, . . . , 0).

There is an edge that is traversed by
√
N/n packets.
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Randomized Packet Routing Algorithm on the
n-cube

Two phase routing algorithm:

1 Send packet to a randomly chosen destination.

2 Send packet from randomly chosen destination to real
destination.

Path: Correct the bits, x1 to xn.
Queue policy: Any greedy queuing method - if a queue to an
edge is not empty one packet traverse the edge.

Theorem

The two phase routing algorithm routes an arbitrary permutation
on the n-cube in O(logN) = O(n) parallel steps with high
probability.
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Theorem

The two phase routing algorithm routes an arbitrary permutation
on the n-cube in O(logN) = O(n) parallel steps with high
probability.

• We focus first on phase 1. We bound the routing time of an
arbitrary packet M.

• Let e1, ..., em be the m ≤ n edges traversed by packet M is
phase 1.

• Let X (e) be the total number of packets that traverse edge e
at that phase.

• Let T (M) be the number of steps till M finished phase 1.
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Lemma

T (M) ≤
m∑
i=1

X (ei ).

• We call any path P = (e1, e2, . . . , em) of m ≤ n edges that
follows the bit fixing algorithm a possible packet path.

• We denote the corresponding nodes v0, v1, . . . , vm, with
ei = (vi−1, vi ).

• For any possible packet path P, let T (P) =
∑m

i=1 X (ei ).
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• If phase I takes more than T steps then for some possible
packet path P,

T (P) ≥ T

• There are at most 2n · 2n = 22n possible packet paths.

• Assume that ek connects (a1, ..., ai , ..., an) to (a1, .., āi , ..., an).

• Only packets that started in address

(∗, ..., ∗, ai , ...., an)

can traverse edge ek , and only if their destination addresses
are

(a1, ...., ai−1, āi , ∗, ...., ∗)

.

• There are no more than 2i−1 possible packets, each has
probability 2−i to traverse ei .
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• There are no more than 2i−1 possible packets, each has
probability 2−i to traverse ei .

•
E[X (ei )] ≤ 2i−1 · 2−i =

1

2
.

•

E[T (P)] ≤
m∑
i=1

E[X (ei )] ≤ 1

2
·m ≤ n.

• Problem: The X (ei )’s are not independent.
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• A packet is active with respect to possible packet path P if it
ever use an edge of P.

• For k = 1, . . . ,N, let Hk = 1 if the packet starting at node k
is active, and Hk = 0 otherwise.

• The Hk are independent, since each Hk depends only on the
choice of the intermediate destination of the packet starting
at node k , and these choices are independent for all packets.

• Let H =
∑N

k=1Hk be the total number of active packets.

•
E[H] ≤ E[T (P)] ≤ n

• Since H is the sum of independent 0− 1 random variables we
can apply the Chernoff bound

Pr(H ≥ 6n) ≤ Pr(H ≥ 6E[H]) ≤ 2−6n.
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For a given possible packet path P,

Pr(T (P) ≥ 30n) ≤ Pr(T (P) ≥ 30n | H ≥ 6n) Pr(H ≥ 6n)

+ Pr(T (P) ≥ 30n | H < 6n) Pr(H < 6n)

≤ Pr(H ≥ 6n) + Pr(T (P) ≥ 30n | H < 6n)

≤ 2−6n + Pr(T (P) ≥ 30n | H < 6n).

We use:

Pr(A) = Pr(A | B) Pr(B)

+ Pr(A | B̄) Pr(B̄)

≤ Pr(B) + Pr(A | B̄)
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Lemma

If a packet leaves a path (of another packet) it cannot return to
that path in the same phase.

Proof.

Leaving a path at the i-th transition implies different i-th bit, this
bit cannot be changed again in that phase.

Lemma

The number of transitions that a packet takes on a given path is
distributed G

(
1
2

)
.

Proof.

The packet has probability 1/2 of leaving the path in each
transition.
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The probability that the active packets cross edges of P more than
30n times is less than the probability that a fair coin flipped 36n
times comes up heads less than 6n times.
Letting Z be the number of heads in 36n fair coin flips, we now
apply the Chernoff bound:

Pr(T (P) ≥ 30n | H ≤ 6n) ≤ Pr(Z ≤ 6n)

≤ e−18n(2/3)2/2 = e−4n ≤ 2−3n−1.

Pr(T (P) ≥ 30n) ≤ Pr(H ≥ 6n) + Pr(T (P) ≥ 30n | H ≤ 6n)

≤ 2−6n + 2−3n−1 ≤ 2−3n
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As there are at most 22n possible packet paths in the hypercube,
the probability that there is any possible packet path for which
T (P) ≥ 30n is bounded by

22n2−3n = 2−n = O(N−1).
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• The proof of phase 2 is by symmetry:

• The proof of phase 1 argued about the number of packets
crossing a given path, no “timing” considerations.

• The path from “one packet per node” to random locations is
similar to random locations to “one packet per node” in
reverse order.

• Thus, the distribution of the number of packets that crosses a
path of a given packet is the same.
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Oblivious Routing

Definition

A routing algorithm is oblivious if the path taken by one packet is
independent of the source and destinations of any other packets in
the system.

Theorem

Given an N-node network with maximum degree d the routing
time of any deterministic oblivious routing scheme is

Ω

(√
N

d3

)
.
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