CS155/254: Probabilistic Methods in Computer Science

Chapter 4.2: Packet routing on an hypercube network

Packet Routing on Parallel Computer

Communication network:

Packet Routing on Parallel Computer

Communication network:

- nodes - processors, switching nodes;
- edges - communication links.

Model and Computational problem

- An edge (v, w) corresponds to two directed edge, $v \rightarrow w$ and $W \rightarrow V$.
- Up to one packet can cross an edge per step, each packet can cross up to one edge per step.
- A permutation communication request: each node is the source and destination of exactly one packet.
- What is the time to route an arbitrary permutation on an N node network?

The n-cube

The 3-cube:

The 4-cube:

The n-cube

The n-cube:
$N=2^{n}$ nodes: $0,1,2, \ldots, 2^{n}-1$.
Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the number of node x in binary.
Nodes x and y are connected by an edge iff their binary representations differ in exactly one bit.

Bit-wise routing: correct bit i in the i-th transition - route has length $\leq n$.

The Butterfly Network

The n-cube

The n-cube:
$N=2^{n}$ nodes: $0,1,2, \ldots, 2^{n}-1$.
Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the number of node x in binary.
Nodes x and y are connected by an edge iff their binary representations differ in exactly one bit.

Bit-wise routing: correct bit i in the i-th transition - route has length $\leq n$.

Problem: Assume that a packet from $\left(x_{1}, \ldots, x_{n / 2}, 0,0, \ldots, 0\right)$ is routed to $\left(0,0, \ldots, 0, x_{1}, \ldots, x_{n / 2}\right)$, for all possible assignments of $x_{1}, \ldots, x_{n / 2}$.
We have $2^{n / 2}=\sqrt{N}$ packets traversing node $(0, \ldots, 0)$.
There is an edge that is traversed by \sqrt{N} / n packets.

Randomized Packet Routing Algorithm on the n-cube

Two phase routing algorithm:
(1) Send packet to a randomly chosen destination.
(2) Send packet from randomly chosen destination to real destination.

Path: Correct the bits, x_{1} to x_{n}.
Queue policy: Any greedy queuing method - if a queue to an edge is not empty one packet traverse the edge.

Theorem

The two phase routing algorithm routes an arbitrary permutation on the n-cube in $O(\log N)=O(n)$ parallel steps with high probability.

Theorem

The two phase routing algorithm routes an arbitrary permutation on the n-cube in $O(\log N)=O(n)$ parallel steps with high probability.

- We focus first on phase 1 . We bound the routing time of an arbitrary packet M.
- Let e_{1}, \ldots, e_{m} be the $m \leq n$ edges traversed by packet M is phase 1.
- Let $X(e)$ be the total number of packets that traverse edge e at that phase.
- Let $T(M)$ be the number of steps till M finished phase 1 .

$$
T(M) \leq \sum_{i=1}^{m} X\left(e_{i}\right)
$$

- We call any path $P=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ of $m \leq n$ edges that follows the bit fixing algorithm a possible packet path.
- We denote the corresponding nodes $v_{0}, v_{1}, \ldots, v_{m}$, with $e_{i}=\left(v_{i-1}, v_{i}\right)$.
- For any possible packet path P, let $T(P)=\sum_{i=1}^{m} X\left(e_{i}\right)$.
- If phase I takes more than T steps then for some possible packet path P,

$$
T(P) \geq T
$$

- There are at most $2^{n} \cdot 2^{n}=2^{2 n}$ possible packet paths.
- Assume that e_{k} connects $\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)$ to $\left(a_{1}, . ., \bar{a}_{i}, \ldots, a_{n}\right)$.
- Only packets that started in address

$$
\left(*, \ldots, *, a_{i}, \ldots, a_{n}\right)
$$

can traverse edge e_{k}, and only if their destination addresses are

$$
\left(a_{1}, \ldots, a_{i-1}, \bar{a}_{i}, *, \ldots, *\right)
$$

- There are no more than 2^{i-1} possible packets, each has probability 2^{-i} to traverse e_{i}.
- There are no more than 2^{i-1} possible packets, each has probability 2^{-i} to traverse e_{i}.

$$
\begin{gathered}
\mathrm{E}\left[X\left(e_{i}\right)\right] \leq 2^{i-1} \cdot 2^{-i}=\frac{1}{2} . \\
\mathrm{E}[T(P)] \leq \sum_{i=1}^{m} \mathrm{E}\left[X\left(e_{i}\right)\right] \leq \frac{1}{2} \cdot m \leq n .
\end{gathered}
$$

- Problem: The $X\left(e_{i}\right)$'s are not independent.
- A packet is active with respect to possible packet path P if it ever use an edge of P.
- For $k=1, \ldots, N$, let $H_{k}=1$ if the packet starting at node k is active, and $H_{k}=0$ otherwise.
- The H_{k} are independent, since each H_{k} depends only on the choice of the intermediate destination of the packet starting at node k, and these choices are independent for all packets.
- Let $H=\sum_{k=1}^{N} H_{k}$ be the total number of active packets.
-

$$
\mathrm{E}[H] \leq \mathrm{E}[T(P)] \leq n
$$

- Since H is the sum of independent $0-1$ random variables we can apply the Chernoff bound

$$
\operatorname{Pr}(H \geq 6 n) \leq \operatorname{Pr}(H \geq 6 \mathrm{E}[H]) \leq 2^{-6 n}
$$

For a given possible packet path P,

$$
\begin{aligned}
\operatorname{Pr}(T(P) \geq 30 n) & \leq \operatorname{Pr}(T(P) \geq 30 n \mid H \geq 6 n) \operatorname{Pr}(H \geq 6 n) \\
& +\operatorname{Pr}(T(P) \geq 30 n \mid H<6 n) \operatorname{Pr}(H<6 n) \\
& \leq \operatorname{Pr}(H \geq 6 n)+\operatorname{Pr}(T(P) \geq 30 n \mid H<6 n) \\
& \leq 2^{-6 n}+\operatorname{Pr}(T(P) \geq 30 n \mid H<6 n) .
\end{aligned}
$$

We use:

$$
\begin{aligned}
\operatorname{Pr}(A) & =\operatorname{Pr}(A \mid B) \operatorname{Pr}(B) \\
& +\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B}) \\
& \leq \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B})
\end{aligned}
$$

Lemma

If a packet leaves a path (of another packet) it cannot return to that path in the same phase.

Proof.

Leaving a path at the i-th transition implies different i-th bit, this bit cannot be changed again in that phase.

Lemma

The number of transitions that a packet takes on a given path is distributed $G\left(\frac{1}{2}\right)$.

Proof.

The packet has probability $1 / 2$ of leaving the path in each transition.

The probability that the active packets cross edges of P more than $30 n$ times is less than the probability that a fair coin flipped $36 n$ times comes up heads less than $6 n$ times.
Letting Z be the number of heads in $36 n$ fair coin flips, we now apply the Chernoff bound:

$$
\begin{aligned}
& \operatorname{Pr}(T(P) \geq 30 n \mid H \leq 6 n) \leq \operatorname{Pr}(Z \leq 6 n) \\
\leq & e^{-18 n(2 / 3)^{2} / 2}=e^{-4 n} \leq 2^{-3 n-1}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}(T(P) \geq 30 n) & \leq \operatorname{Pr}(H \geq 6 n)+\operatorname{Pr}(T(P) \geq 30 n \mid H \leq 6 n) \\
& \leq 2^{-6 n}+2^{-3 n-1} \leq 2^{-3 n}
\end{aligned}
$$

As there are at most $2^{2 n}$ possible packet paths in the hypercube, the probability that there is any possible packet path for which $T(P) \geq 30 n$ is bounded by

$$
2^{2 n} 2^{-3 n}=2^{-n}=O\left(N^{-1}\right)
$$

- The proof of phase 2 is by symmetry:
- The proof of phase 1 argued about the number of packets crossing a given path, no "timing" considerations.
- The path from "one packet per node" to random locations is similar to random locations to "one packet per node" in reverse order.
- Thus, the distribution of the number of packets that crosses a path of a given packet is the same.

Oblivious Routing

Definition

A routing algorithm is oblivious if the path taken by one packet is independent of the source and destinations of any other packets in the system.

Theorem

Given an N-node network with maximum degree d the routing time of any deterministic oblivious routing scheme is

$$
\Omega\left(\sqrt{\frac{N}{d^{3}}}\right)
$$

