CS155/254: Probabilistic Methods in Computer Science

Chapter 6: The Probabilistic Method

The Probabilistic Method

Let X be a random variable defined on a discrete sample space $(\Omega, \operatorname{Pr}(\cdot))$.

Paul Erdös 1913-1996

- Assume $X: \Omega \rightarrow\{0,1\}$.

If $\operatorname{Pr}(X=1)>0$, then there is $\omega \in \Omega$ such that $X(\omega)=1$.
Example: Ω is a collection of graphs, $X(\omega)=1$ if graph ω is connected.

- If $E[X]=c$, then there are $\omega_{1}, \omega_{2} \in \Omega$ such that $X\left(\omega_{1}\right) \leq c$ and $X\left(\omega_{2}\right) \geq c$. Example: Assume that X is a gain in a sequence of games. There are sequences that yield $\leq c$ and $\geq c$

Probability Argument Example: Edge Coloring

$K_{k}=$ the complete graph on k vertices (a clique of k nodes) $-K_{k}$ has all the $\binom{n}{2}$ edges between its k vertices.

Can we color the edges of K_{1000} with two colors so that no K_{20} is edge monochromatic?

Theorem

If $\binom{n}{k} 2^{-\binom{k}{2}+1}<1$, then it is possible to color the edges of K_{n} so that it has no monochromatic K_{k} subgraph.

Can we color the edges of K_{1000} with two colors so that no K_{20} is edge monochromatic?

Color the edges of K_{1000} randomly with two colors. The probability that at least one K_{20} is edge monochromatic is bounded by

$$
\begin{aligned}
\binom{1000}{20} 2^{-\binom{20}{2}+1} & \leq \frac{1000^{20}}{20!} 2^{-(20(20-1) / 2)+1} \\
& \leq \frac{2^{10 \cdot 20}}{20!} 2^{-10(20-1)+1} \leq \frac{2^{10+1}}{20!}<1 .
\end{aligned}
$$

The probability that no K_{20} that is edge monochromatic is >0.
Therefore, the space of all $2\binom{1000}{2}$ coloring of the edges in K_{1000} has at least one assignment such that no K_{20} is edge monochromatic

Proof

Define a sample space:

- $\Omega=$ all $2\binom{n}{2}$ coloring with two colors of all the edges in K_{n}.
- The probability of each coloring in Ω is $2^{-\binom{n}{2} \text {. }}$

This model is equivalent to coloring each edge independently with equal probabilities to the two colors.
For $i=1, \ldots,\binom{n}{k}$, let A_{i} be the event that clique i is monochromatic. $\operatorname{Pr}\left(A_{i}\right)=2^{-\binom{k}{2}+1}$. The probability that at least one K_{k} is monochromatic

$$
\begin{gathered}
\leq \operatorname{Pr}\left(\begin{array}{l}
\binom{n}{k} \\
i=1
\end{array} A_{i}\right) \leq \sum_{i=1}^{\binom{n}{k}} \operatorname{Pr}\left(A_{i}\right)=\binom{n}{k} 2^{-\binom{k}{2}+1}<1, \\
\operatorname{Pr}\binom{\binom{n}{k}}{\bigcap_{i=1}}=1-\operatorname{Pr}\left(\bigcup_{i=1}^{\binom{n}{k}} A_{i}\right)>0 .
\end{gathered}
$$

For $i=1, \ldots,\binom{n}{k}$, let A_{i} be the event that clique i is monochromatic. $\operatorname{Pr}\left(A_{i}\right)=2^{-\binom{k}{2}+1}$.

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{\binom{n}{k}} \overline{A_{i}}\right)=1-\operatorname{Pr}\left(\bigcup_{i=1}^{\binom{n}{k}} A_{i}\right)>0 .
$$

Thus, there is a coloring $\omega \in \Omega$ of the $\binom{n}{2}$ edges with the required property.

Theorem

If $\binom{n}{k} 2^{-\binom{k}{2}+1}<1$, then it is possible to color the edges of K_{n} so that it has no monochromatic K_{k} subgraph.

The Expectation Argument: Large Cut-Set in a Graph.

Theorem

Given any graph $G=(V, E)$ with n vertices and m edges, there is a partition of V into two disjoint sets A and B such that at least $\mathrm{m} / 2$ edges connect a vertex in A to a vertex in B.

Proof.

Construct sets A and B by randomly assign each vertex to one of the two sets.
The probability that a given edge connect A to B is $1 / 2$, thus the expected number of such edges is a random partition is $m / 2$.
Thus, there exists such a partition.
How do we find such a partition?

Derandomization using Conditional Expectations
$C(A, B)=$ number of edges connecting A to B.
If A, B is a random partition $E[C(A, B)]=\frac{m}{2}$.
Algorithm:
(1) Let $v_{1}, v_{2}, \ldots, v_{n}$ be an arbitrary enumeration of the vertices.
(2) Let x_{i} be the set where v_{i} is placed $\left(x_{i} \in\{A, B\}\right)$.
(3) For $i=1$ to n do:
(1) Place v_{i} such that

$$
\begin{aligned}
& E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}\right] \\
& \geq E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i-1}\right] \geq m / 2
\end{aligned}
$$

Conditional Expectation

Definition

$$
E[Y \mid Z=z]=\sum_{y} y \operatorname{Pr}(Y=y \mid Z=z)
$$

where the summation is over all y in the range of Y.

Lemma

For any random variables X and Y,

$$
E[X]=\sum_{y} \operatorname{Pr}(Y=y) E[X \mid Y=y]
$$

where the sum is over all values in the range of Y.

Lemma

For all $i=1, \ldots, n$ there is an assignment of v_{i} such that

$$
\begin{aligned}
& E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}\right] \\
& \geq E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i-1}\right] \geq m / 2
\end{aligned}
$$

Proof.

By induction on i.

For $i=1, E\left[E\left[C(A, B) \mid X_{1}\right]\right]=E[C(A, B)]=m / 2$
For $i>1$, if we place v_{i} randomly in one of the two sets,

$$
\begin{aligned}
& E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i-1}\right] \\
= & \frac{1}{2} E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}=A\right]+\frac{1}{2} E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}=B\right] \\
= & m / 2 .
\end{aligned}
$$

$$
\begin{aligned}
& \max \left(E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}=A\right], E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}=B\right]\right) \\
\geq & E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i-1}\right] \\
\geq & m / 2
\end{aligned}
$$

How do we compute

$$
\begin{aligned}
& \max \left(E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}=A\right], E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i}=B\right]\right) \\
& \geq E\left[C(A, B) \mid x_{1}, x_{2}, \ldots, x_{i-1}\right] \geq m / 2
\end{aligned}
$$

We just need to consider edges between v_{i} and v_{1}, \ldots, v_{i-1}. Simple Algorithm:
(1) Place v_{1} arbitrarily.
(2) For $i=2$ to n do
(1) Place v_{i} in the set with smaller number of neighbors.

Sample and Modify

An independent set in a graph G is a set of vertices with no edges between them.
Finding the largest independent set in a graph is an NP-hard problem.

Theorem

Let $G=(V, E)$ be a graph on n vertices with dn/2 edges. Then G has an independent set with at least $n / 2 d$ vertices.

Algorithm:

(1) Delete each vertex of G (together with its incident edges) independently with probability $1-1 / d$.
(2) For each remaining edge, remove it and one of its adjacent vertices.
$X=$ number of vertices that survive the first step of the algorithm.

$$
E[X]=\frac{n}{d} .
$$

$Y=$ number of edges that survive the first step.
An edge survives if and only if its two adjacent vertices survive.

$$
E[Y]=\frac{n d}{2}\left(\frac{1}{d}\right)^{2}=\frac{n}{2 d} .
$$

The second step of the algorithm removes all the remaining edges, and at most Y vertices.
Size of output independent set:

$$
E[X-Y]=\frac{n}{d}-\frac{n}{2 d}=\frac{n}{2 d} .
$$

Sets with Distinct Sums

A set $S=\left\{x_{1}, \ldots x_{k}\right\} \subset\{1, \ldots, n\}$ has the distinct sums property if for any $S_{1}, S_{2} \subset S, S_{1} \neq S_{2}$

$$
\sum_{x_{i} \in S_{1}} x_{i} \neq \sum_{x_{j} \in S_{2}} x_{j}
$$

Theorem

Let $f(n)$ be the maximum size of a distinct sums set that is a subset of $\{1, \ldots, n\}$.

$$
f(n) \leq \log _{2} n+\frac{1}{2} \log \log n+O(1)
$$

Simple Argument

Assume that $S=\left\{x_{1}, \ldots x_{k}\right\} \subset\{1, \ldots, n\}$ has the distinct sums property.

For $i=1, \ldots, k$, let $Y_{i} \in\{0,1\}$.
There are 2^{n} assignments for Y_{1}, \ldots, Y_{k}, and for each assignment $X=\sum_{i=1}^{k} x_{i} Y_{i}$ must give a different value.

There are no more than kn possible different values.

$$
\begin{gathered}
2^{k} \leq n k \\
k=\log _{2} n+\log _{2} k \\
k \leq \log _{2} n+\log \log n
\end{gathered}
$$

Adding the Variance

Assume that $S=\left\{x_{1}, \ldots x_{k}\right\} \subset\{1, \ldots, n\}$ has the distinct sums property.

Define k random random variable $\operatorname{Pr}\left(Y_{i}=1\right)=\operatorname{Pr}\left(Y_{i}=0\right)=\frac{1}{2}$.
Let $X=\sum_{i=1}^{k} x_{i} Y_{i}$. Then

$$
\mu=E[X]=\frac{1}{2} \sum_{i=1}^{k} x_{i}, \quad \text { and } \quad \operatorname{Var}[X]=\frac{1}{4} \sum_{i=1}^{k} x_{i}^{2} \leq \frac{n^{2} K}{4} .
$$

Applying Chebyschev's Inequality, for any $\lambda>0$

$$
\operatorname{Pr}\left(|X-\mu| \geq \lambda \frac{n \sqrt{k}}{2}\right) \leq \frac{1}{\lambda^{2}}
$$

$$
\operatorname{Pr}\left(|X-\mu| \leq \lambda \frac{n \sqrt{k}}{2}\right) \geq 1-\frac{1}{\lambda^{2}}
$$

Since S has the distinct sums property, for any $x, \operatorname{Pr}(X=x)$ is ether 2^{-k} or 0 . Thus,

$$
\begin{gathered}
\operatorname{Pr}\left(|X-\mu| \leq \lambda \frac{n \sqrt{k}}{2}\right) \leq 2^{-k}(\lambda n \sqrt{k}+1) \\
1-\frac{1}{\lambda^{2}} \leq \operatorname{Pr}\left(|X-\mu| \leq \lambda \frac{n \sqrt{k}}{2}\right) \leq 2^{-k}(\lambda n \sqrt{k}+1), \\
n \geq \frac{2^{k}\left(1-\lambda^{-2}\right)-1}{\lambda \sqrt{k}}
\end{gathered}
$$

For $\lambda=\sqrt{3}$,

$$
k \leq \log _{2} n+\frac{1}{2} \log \log n+O(1)
$$

The First and Second Moment Methods

Theorem

For an integer random variable $X \geq 0$,
(1) $\operatorname{Pr}(X>0)=\operatorname{Pr}(X \geq 1) \leq E[X]$
(2) $\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-E[X]| \geq E[X]) \leq \frac{\operatorname{Var}[X]}{(E[X])^{2}} \leq \frac{E\left[X^{2}\right]}{(E[X])^{2}}$
(3) $\operatorname{Pr}(X \geq 1) \geq \frac{(E[X])^{2}}{E\left[X^{2}\right]}$

Proof: For $X \geq 0$ and integer:

1. $\operatorname{Pr}(X \geq 1) \leq \sum_{i \geq 1} \operatorname{Pr}(X \geq i)=E[X]$.
2. Chebyshev bound.
3. Using Cauchy-Schwarz inequality:

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i} b_{i} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}} \\
& \quad E[X]=E\left[X \cdot 1_{X \geq 1}\right] \leq \sqrt{E\left[X^{2}\right]} \sqrt{\operatorname{Pr}(X \geq 1)}
\end{aligned}
$$

Application: Number of Isolated Nodes

Let $G_{n, p}=(V, E)$ be a random graph generated as follows:

- The graph has n nodes.
- Each of the $\binom{n}{2}$ pairs of vertices are connected by an edge with probability p independently of any other edge in the graph.

A node is isolated if it is adjacent to no edges.
If $p=0$ all vertices are isolated (have no edges). If $p=1$ no vertex is isolated. What can we say for $0<p<1$?

Application: Number of Isolated Nodes

Let $G_{n, p}=(V, E)$ be a random graph generated as follows:

- The graph has n nodes.
- Each of the $\binom{n}{2}$ pairs of vertices are connected by an edge with probability p independently of any other edge in the graph.

A node is isolated if it has no edges.

Theorem

For any function $w(n) \rightarrow \infty$

- If $p=\frac{\log n-w(n)}{n}$, then with high probability the graph has isolated nodes.
- If $p=\frac{\log n+w(n)}{n}$, then with high probability the graph has no isolated nodes.

High Probability $=$ probability converging to 1 as $n \rightarrow \infty$

Proof

For $i=1, \ldots, n$, let $X_{i}=1$ if node i is isolated, otherwise $X_{i}=0$. Let $X=\sum_{i=1}^{n} X_{i}$.

$$
E[X]=n(1-p)^{n-1}
$$

For $p=\frac{\log n+w(n)}{n}$

$$
E[X]=n(1-p)^{n-1} \leq e^{\log n-(n-1) p} \leq e^{-w(n)} \rightarrow 0
$$

Thus, for $p=\frac{\log n+w(n)}{n}$,

$$
\operatorname{Pr}(X>0) \leq E[X] \rightarrow 0
$$

To use the second moment method we need to bound $\operatorname{Var}[X]$.

$$
\operatorname{Var}\left[X_{i}\right] \leq E\left[X_{i}^{2}\right]=E\left[X_{i}\right]=(1-p)^{n-1}
$$

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=(1-p)^{2 n-3}-(1-p)^{2 n-2}
$$

$$
\begin{aligned}
\operatorname{Var}[X] & \leq \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{i}\right) \\
& =n(1-p)^{n-1}+n(n-1)(1-p)^{2 n-3}-n(n-1)(1-p)^{2 n-2} \\
& =n(1-p)^{n-1}+n(n-1) p(1-p)^{2 n-3}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}[X] & =\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{i}\right) \\
& =n(1-p)^{n-1}+n(n-1) p(1-p)^{2 n-3}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}(X=0) & \leq \operatorname{Pr}(|X-E[X]| \geq E[X]) \leq \frac{\operatorname{Var}[X]}{(E[X])^{2}} \\
& =\frac{n(1-p)^{n-1}+n(n-1) p(1-p)^{2 n-3}}{n^{2}(1-p)^{2 n-2}} \\
& =\left(1-\frac{1}{n}\right) \frac{p}{1-p}+\frac{1}{n(1-p)^{n-1}}
\end{aligned}
$$

For $p=\frac{\log n-w(n)}{n}$,

$$
\begin{aligned}
\operatorname{Pr}(X=0) & \leq \frac{\operatorname{Var}[X]}{(E[X])^{2}} \\
& =\left(1-\frac{1}{n}\right) \frac{p}{1-p}+\frac{1}{n(1-p)^{n-1}} \rightarrow 0
\end{aligned}
$$

Since

$$
n(1-p)^{n-1} \geq n e^{-p(n-1)}\left(1-\frac{p^{2}}{n}\right) \geq \frac{1}{2} e^{w(n)}
$$

We use: for $|X| \leq 1$

$$
e^{x}\left(1-\frac{x^{2}}{n}\right) \leq\left(1+\frac{x}{n}\right)^{n} \leq e^{x}
$$

