
CSCI 1680 Computer Networks Fonseca

Homework 3
Due: 16 November, 2012, 4pm

Problem 1 - TCP and Loss
[4 pts]

It is challenging to have TCP perform well in paths with high bandwidth-delay products.
Here we will see that TCP is very sensitive to loss, and that it takes a long time to get close
to capacity of the path, in these scenarios.

We saw in class an approximation of the relationship between TCP’s throughput S and loss
rate λ (measured in fraction of segments that are lost):

S ≈
√

3

2
× MSS

RTT
√
λ
.

a. According to our simplified model, for a path with bandwidth of 1Gbps, RTT of
100ms, and a MSS of 1250B, what does the loss rate have to be so that we achieve
0.75× 1Gbps throughput?

b. What is the average throughput if everything remains the same, but the loss rate
increases by 3×? And if everything remains the same as in (a), but the RTT reduces
to 10ms?

c. Now suppose you upgrade your network to 10Gbps, with the same RTT and MSS as
in (a). What is the loss rate you need to achieve 0.75× 10Gbps throughput?

d. In the same 10Gbps network with 100ms RTT and MSS of 1250B, determine the ideal
window size W (in segments) to fill the pipe. Now assume that TCP Reno reached
this size, had a loss, and halved its window to W/2 (segments). How long will it take
for TCP to reach the window size of W , and how much data will it send during that
time?

Problem 2 - TCP Timeout
[6 pts]

The original algorithm for TCP timeout was suggested as

EstRTT = (1− α)× EstRTT + α× SampleRTT

Timeout = 2× EstRTT.

The improved Jacobson/Karels algorithm adds a calculation for the standard error and uses
it in the timeout calculation:

EstRTT = (1− α)× EstRTT + α× SampleRTT

CSCI 1680 Homework 3 16 November, 2012, 4pm

EstDev = (1− β)× EstDev + β× | SampleRTT− EstRTT |

Timeout = EstRTT + 4× EstDev.

Assuming that the current values for EstRTT and EstDev are, respectively, 1.0 and 0, that
α = β = 1/8, and that suddenly the RTT becomes 5 with no deviation, compare the
two algorithms over 6 update intervals. How many timeouts does each algorithm
experience in this situation? Show a little table for each algorithm, in the format below,
with the successive values of EstRTT, EstDev, and Timeout. (Use a spreadsheet program
or write a little program to calculate the table. You can use either the floating point version
of the algorithm, as above, or the integer version that multiplies both sides of the equations
by 1/α or 1/β, and uses integer operations only, see the Implementation section of these
algorithms in the book, or Appendix A.2 of Van Jacobson’s original paper1).

Original Algorithm (Initial EstRTT = 1.0)
Time SampleRTT EstRTT Timeout Value Timeout?

1 5
...
6 5

Jacobson/Karels Algorithm (Initial EstRTT = 1.0, Initial EstDev = 0.0)
Time SampleRTT EstRTT EstDev Timeout Value Timeout?

1 5
...
6 5

Problem 3 - DNS and the Great Firewall of China
[4 pts]

Part of the operation of the GFC is to respond to DNS queries with wrong information (it’s
not the only way it prevents access to unwanted sites, though). You are going to see this
for yourself below.

a. Use dig to find at least two addresses for www.facebook.com and list them. Look
these up to find if they do belong to Facebook. You can use a tool such as http:

//ip-lookup.net/index.php, and look the different sections of information. Show
some (brief) evidence.

b. Do a reverse (PTR) lookup and show the command and the answer. Is it consistent
with the above (it doesn’t have to be the same name, but some name that belongs to
Facebook)?

1Van Jacobson and Michael Karels, Congestion Avoidance and Control, In Proceedings of SIGCOMM
88. http://ee.lbl.gov/papers/congavoid.pdf

2

http://ip-lookup.net/index.php
http://ip-lookup.net/index.php
http://ee.lbl.gov/papers/congavoid.pdf

CSCI 1680 Homework 3 16 November, 2012, 4pm

c. Let’s use dig with the +norec option to get the answer from the source. Starting
from the root, i.e., ’.’, list the series of queries you make, until you get the answer
from Facebook’s own nameservers. List the queries you make and the final answer.

d. Now let’s look up Facebook’s address from within China. Go to https://sites.

google.com/site/kiwi78/public-dns-servers and find a DNS server in China.
List the DNS server you use. Look up www.facebook.com a few times, list the answers,
and try to find where in the world the addresses are, and, if possible, who owns them.
Are any of them Facebook’s addresses?

e. As an aside, use http://just-ping.com to measure the latency from several vantage
points on the Internet to Facebook’s web server (choose one the IP addresses from (a)).
There are probably some inconsistencies (two servers separated by a large geographical
distance with ping times that add up to less than the speed-of-light latency between
the two places). How is Facebook pulling this off? What mechanism are they probably
using?

Problem 4 - HTTP
[4 pts]

Web pages are composed of several objects, and a browser has to download all of them to
properly display the intended content. HTTP 1.0 allowed one object per TCP connection.
HTTP 1.1 introduced persistent connections, that allow several requests to be made in the
same HTTP connection, and pipelined requests, that allow several requests to be sent at
once, before the answers come back. (This question is looking for qualitative answers, no
need for elaborate examples...)

a. With persistent connections alone, the browser has to request one object after it
receives the previous one. Do persistent connections, then, offer any advantage over
a sequence of individual connections, one after the other?

b. Pipelined connections allow the user agent to send several requests at once, and the
server can respond to all of them in sequence. What is the advantage of this strategy
over persistent connections alone?

c. We saw that another common strategy to increase performance is for the Browser to
open several parallel connections. What is the effect that this has on the bandwidth,
if the client-server flows are sharing the bottleneck link with one other flow and uses
8 parallel, persistent connections? If you have N objects, is it always better to open
as many connections as possible? How does that depend on the sizes of the objects?

d. Originally the suggested initial window for TCP was one or two segments. In 2002,
RFC 3390 raised it to four. Recently, Google proposed raising it to 10, or even 16
segments. Why is this good for small web pages? Give two potential dangers of this
change.

3

https://sites.google.com/site/kiwi78/public-dns-servers
https://sites.google.com/site/kiwi78/public-dns-servers
http://just-ping.com

