
CS 173 Programming Languages Shriram K.

Scheme Tutorial Solutions
Fall 2002

Problem Set 1: Basic Scheme

1. Function to total the amount of change (pennies, nickels, dimes, quarters) in a
bag:

;; sum-coins : number number number number � number
(define (sum-coins pen nick dime quart)

(� (� .01 pen)
(� .05 nick)
(� .1 dime)
(� .25 quart)))

2. Function to compute the surface area of a cylinder:

;; area-cylinder : number number � number
(define (area-cylinder radius height)

(� (� 2 pi (sqr radius))
(� 2 pi radius height)))

3. Surface area of a pipe computed as a single function:

;; area-pipe1 : number number number � number
(define (area-pipe1 inner-radius height thickness)

(� (� 2 pi height inner-radius)
(� 2 pi height (� thickness inner-radius))
(� 2 (� (� pi (sqr (� thickness inner-radius)))

(� pi (sqr inner-radius))))))

Surface area of a pipe computed using helper functions:

;; area-pipe : number number number � number
;; to determine the area of a pipe with given inner radius, length, and
;; thickness
(define (area-pipe inner-radius height thickness)

(� (� height (circumference (� inner-radius thickness)))
(� height (circumference inner-radius))
(� 2 (� (area-circle (� inner-radius thickness))

(area-circle inner-radius)))))

CS 173 Scheme Tutorial Solutions Fall 2002

;; area-circle : number � number
;; determines the area of a circle with given radius
(define (area-circle r)

(� pi r r))

;; circumference : number � number
;; determines the circumference of a circle with given radius
(define (circumference r)

(� 2 pi r))

4. Function for computing tax:

;; tax : number � number
;; computes a flat income tax
(define (tax pay)

(cond
[(��� pay 240) 0]
[(� pay 480) (� pay .28)]
[else (� pay .15)]))

Functions for computing gross pay and net pay (based on gross pay):

;; gross-pay : number � number
;; computes the gross pay of a person making $12 an hour, based on the hours worked
(define (gross-pay hours)

(� 12 hours))

;; net-pay : number � number
;; computes the net pay based on hours worked
(define (net-pay hours)

(� (gross-pay hours) (tax (gross-pay hours))))

5. Functions to determine if a quadratic equation is degenerate or not. If it is not
degenerate it then computes whether the solution has 2, 1 or 0 solutions.

;; discriminant : number number number � number
(define (discriminant a b c)

(� (sqr b) (� 4 a c)))

2

CS 173 Scheme Tutorial Solutions Fall 2002

;; what-kind? : number number number � symbol
;; determines if a quadratic equation is degenerate, or has none,
;; one, or two solutions
(define (what-kind? a b c)

(cond
[(� a 0) ’degenerate]
[(� (discriminant a b c) 0) ’two]
[(� (discriminant a b c) 0) ’one]
[else ’none]))

6. Function to compute the difference in seconds between two points in time, using
the datatype time-point to represent hours, minutes and seconds.

;; datatype to represent time in hours, minutes and seconds
(define-datatype time time?

[time-point (hour number?) (min number?) (sec number?)])

;; in-seconds : time � number
;; converts hour, minute and second representation of time into seconds
(define (in-seconds t)

(cases time t
[time-point (h m s) (� s (� m 60) (� h 60 60))]))

;; time-diff : time-point time-point � number
;; computes the difference (in time sec) between two time-point(s)
(define (time-diff t1 t2)

(� (in-seconds t2) (in-seconds t1)))

7. Datatype for representing a 2D-point and a shape.

(define-datatype position position?
[2d-point (x number?)

(y number?)])

(define-datatype shape shape?
[circle (center position?)

(radius number?)]
[square (top-left position?)

(length number?)]
[rect (top-left position?)

(width number?)
(height number?)])

3

CS 173 Scheme Tutorial Solutions Fall 2002

8. Function for finding the area of a shape

;; area : shape � number
(define (area s)

(cases shape s
[square (tl l) (sqr l)]
[rect (tl w h) (� w h)]
[circle (c r) (� pi (sqr r))]))

9. Functions which take a shape and return a new shape. The new shape is a copy
of the old shape translated by a value in the � direction

;; getx : position � number
(define (getx p)

(cases position p
[2d-point (x y) x]))

;; gety : position � number
(define (gety p)

(cases position p
[2d-point (x y) y]))

; translate-shape : shape number � shape
; translates a shape by a delta in the x direction
(define (translate-shape s delta)

(cases shape s
[square (tl l) (square (2d-point (� delta (getx tl)) (gety tl)) l)]
[rect (tl w h) (rect (2d-point (� delta (getx tl)) (gety tl)) w h)]
[circle (c r) (circle (2d-point (� delta (getx tl) (gety tl))) r)]))

4

CS 173 Scheme Tutorial Solutions Fall 2002

10. Functions to determine if a point is within a shape:

;; between? : number number number � boolean
;; determines if the first number is within the range of the second two.
(define (between? x l r)

(and (��� x l) (��� x r)))

;; in-circle? : point number point � boolean
(define (in-circle? center radius pt)

(��� (� (sqr (� (getx pt) (getx center)))
(sqr (� (gety pt) (gety center))))

(sqr radius)))

;; in-square? : point number point � boolean
(define (in-square? tl l pt)

(and (between? (getx pt)
(getx tl)
(� (getx tl) l))

(between? (gety pt)
(gety tl)
(� (gety tl) l))))

;; in-rectangle?: point number number point � boolean
(define (in-rectangle? tl width height pt)

(and (between? (getx pt)
(getx tl)
(� (getx tl) width))

(between? (gety pt)
(gety tl)
(� (gety tl) height))))

;; in-shape? : shape point � boolean
(define (in-shape? s pt)

(cases shape s
[circle (c r) (in-circle? c r pt)]
[square (tl l) (in-square? tl l pt)]
[rect (tl w h) (in-rectangle? tl w h pt)]))

5

