
ASSIGNMENT 5: Collaborative Filtering

Out: 4/8/02; Due:5/7/02

Programming Parallel and Distributed Systems

Computer Science 178, Spring 2002

Steven P. Reiss

OBJECTIVE

This assignment is designed to first familiarize yourself with MPI and then to
gain some experience designing and implementing a parallel application. The
actual assignment has two parts. The first part involves implemeting boosting
using MPI on a network of workstations. The second part, involves designing
and implementing a parallel version of singular value decomposition. Here you
will first run it on the network of workstations and then on the IBM SP on
campus.

MOTIVATION

Machine learning studies automatic techniques for learning to make accurate
predictions based on past observations. A dataset for learning typically consists
of a number of items, each of which has several attributes and is labelled with
a class label, indicating what kind of item it is. The goal is to build a predictor
that, given a new object and its attributes, will predict a class label for it.

A state-of-the-art technique for building predictors is boosting. Boosting
is based on the idea of combining many weak (moderately acurate) prediction
rules in order to construct a highly accurate one. The boosting algorithm selects
a weak prediction rule repeatedly, each time using a different distribution over
the data set, and after many rounds the boosting algorithm combines these
weak rules into a single prediction rule that hopefully is more accurate than any
of the single weak rules. The distribution over the dataset is chosen in a way
that the most weight is placed on the items that are most often misclassified by
the preceding weak rules; this has the effect of forcing the base learner to focus
its attention on the hardest examples. Eventually the selected weak rules are
combined into a single rule by a weighted majority vote of their predictions.

1



In this assignment we will use boosting in an atypical setting, that of in-
formation filtering in multi-user systems. In this setting each user may define
personalized categories for items, such as movies. In particular, users may an-
notate items by whether an item is relevant (label 1) or irrelevant (label 0).
These preferences or categories will be specific to a particular person, yet there
might be similarities between user interests that induce dependencies among
the category labels. For example, a movie mi labeled with yj

i ∈ {0, 1} by some
user uj might provide evidence about how another user might label this item,
especially if the two users have shown similar responses on previous items.

However, typical datasets are extremely large, and in most cases predictions
must be generated or updated fast, so it is natural to consider parallelism in
the prediction generation process. Moreover, available datasets are very sparse,
and algorithms for an approximate reconstruction of the complete dataset are
of great importance.

SPECIFICATIONS

PART I

We want to estimate the movie preferences of a single user each time, that we
will call active user. This means that we want to predict the (hidden) labels
of movies according to the active user, where the weak prediction rules in the
boosting rounds will be the labels of these movies according to the rest of the
users. The data is given in the form of a sparse matrix M , where each row
represents a movie, and each column a user profile. An entry M(i, j) = 1
denotes that movie i is relevant to user j, and a zero entry that is irrelevant.
The standard algorithm for boosting is given in Table 1.

A parallel boosting scheme can be as follows: first the matrix M is split into
m× (n/k) chunks, where k is the number of processors. In a boosting round t,
each processor computes steps [4] and [5] of the algorithm on the portion of the
matrix they have. Then the processor with the best matching user profile (the
processor with the hypothesis ht,k with the smallest εt), executes steps [6]-[10]
and broadcasts the weights wt+1 to the rest of the processors for the following
boosting round.

PART II

We are given a sparse data set and want to compute a relatively good approx-
imation of the missing data. A simple algorithm for the reconstruction of an
incomplete data set can be found in section 5.2 of ”Spectral Analysis of Data”
by Y. Azar et al. This algorithm is based on the singular value decomposition
(SVD), so the main task in this part of the assinment is to implement a parallel
sparse SVD algorihtm.

Basic background and algorithms for the singular value decomposition of
a matrix can be found in ”Matrix Computations” by G. H. Colub and C. F.

2



Van Loan. Several methods (subspace iteration method, trace minimization
method, Lanczos method and block Lanczos method) for computing the SVD
of large sparse matrices on a multiprocessor architecture are presented in ”Large
Scale Sparse Singular Value Decomposition” by M. W. Berry. You can pick a
method of your choice, but one of the methods described in the above paper is
recommended due the nature of the data matrices we are dealing with in the
collaborative filtering setting.

There are copies of above papers in the directory /course/cs178/handouts/.

TESTING

PART I

You are given a fully reconstructed dataset that contains 1682 movies and 943
user profiles (/course/cs178/handouts/MovieLensBinary.dat). The matrix
is stored columnwise, that is the movie votes for each user are stored in each
line.

A user should be randomly selected to be the active user, and his/her profile
put aside. The profiles of the rest of the users will comprise the set of weak
prediction rules for boosting. Moreover, for all users the movie votes should
be split into a training set (90%) and a test set (10%). The parallel boosting
algorithm should be trained on the training set and tested for the active user
on the test set. Average accuracy over 100 repetition of the experiment, where
a user is randomly selected to be the active user, and running times for the
experiments should be reported.

PART II

You are given a sparse dataset that contains 1623 movies and about 61265
user profiles. (/course/cs178/handouts/EachMovieBinary.dat) The sparse
matrix is stored columnwise, that is the movie ids followed by a delimiter and
the vote (<mid>:<vote>) of the nonzero entries for each user are stored in each
line. Note that here 1 denotes that a movie is relevant to the user, −1 that it
is irrelevant, and 0 denotes a missing vote.

The full matrix should be reconstructed for increasing number of user profiles
(see how much you can deal with), and the reconstruction times should be
reported. Moreover, part I should be repeated for the various reconstructed
matrices and accuracy results reported.

MECHANICS

Your MPI program for the first part of the assignment should run on a network of
workstations. A recent implementation of MPI is available in /cs/src/mpi/lam
on the Suns. The commands in /cs/src/mpi/lam/bin starting with ”lam” can

3



Input: zero-one m × n matrix M (votes matrix)
zero-one m × 1 vector V (active user’s votes)
a constant T

[1] initialize for all i : w1(i) := 1/m

[2] for t = 1 to T do

[3] for all i : pt(i) := wt(i)/(
∑

i

wt(i))

[4] ht := argmin
j

∑

i

pt(i)[[M(i, j) 6= V (i)]]

[5] εt :=
∑

i

pt(i)[[M(i, j) 6= V (i)]]

[6] if εt > 1/2 then
[7] T := t − 1
[8] goto 13

[9] end if
[10] βt := εt/(1 − εt)

[11] for all i : wt+1(i) := wt(i)β
1−[[M(i,ht) 6=V (i)]]
t

[12] end for

[13] Output: H(i) = arg max
y∈{0,1}

T∑

t=1

(log 1/βt)[[M(i, ht) = y]]

Table 1: The sequential boosting algorithm. The formula [[E]] is 1 if E is true
and 0 otherwise.

be used to set up the set of machines to be included in the network of work-
stations. The lamboot command takes one argument, a file containing the host
names of the machines to run on. The command mpirun -np <#> [command]
can then be used to run your program (command) using # processors. In-
clude files are in /cs/src/mpi/lam/include and the libraries you will need to
bind with are in /cs/src/mpi/lam/lib. (You might also need -lsocket on
the suns). You probably want to get your program working with one processor
initially. And then move to multiple processors.

Your second part of the assignment should also run on the SP on campus,
using your TCASCV account. You might find ”Getting Started on the IBM
SP” (http://www.cascv.brown.edu/spuser.html) useful as an introduction
to computing resources at TCASCV.

4


