Lecture 8: Beyond Java RMI

CS178: Programming Parallel and Distributed
Systems

February 21, 2001
Steven P. Reiss

I. Overview

A. Client-server computing is widely used
1. Server generally controls a shared resource
2. Clients want access to that shared resource
B. Resource access is generally done via messages
1. Machines are widely distributed
2. Messages form the communication mechanism
3. Sockets form the basis for sending/receiving messages
C. Message passing is fairly low-level
1. We thus build higher-level abstractions on top of it
a) RPC
b) Remote object invocation (OO RPC)
2. And try to incorporate this into a language
a) Java RMI
b) NIL and messages

D. This time -- other alternatives

Il1. Java RMI notes

A. Multiple threads

1. Generally each RMI request is handled by a separate
thread

2. You have to provide any synchronization for these
threads

B. Generating stubs and skeletons
1. Recall how RMI handles remote objects

a) Client makes a call; call translated in messages

CS178 — Programming Parallel and Distributed Systems 1 Lecture 8



b) Arguments are marshalled, etc.

c) Server gets messages, unmarshalls arguments
d) Server calls method on actual object

e) Return value sent back as message

f) Return message translated into value and returned
2. Non-remote objects handled by serialization

a) All passed objects must be serializable

b) Objects read/written -- beware of static/transient fields
3. In order to do this you need to have

a) Stub in the client to translate the calls, handle return

b) Skeleton in server to translate messages, make call
4. Where do these stubs and skeletons come from

a) Injava they are dynamically loaded by RMI package

b) This is done invisibly and automatically

c) But they still need to be generated
5. RMIC -- RMI compiler does this

a) First compile the classes

b) Then rmic -d <output> class class ...

111.CORBA

A. Objectives
1. Provide object-based distributed computing

a) Based on a robust object model

b) Language independent
Distribution transparency
Performance

Extensible and dynamic behavior
Naming system architecture
Concurrency control
Transactions

Robust and highly available

. Versioning

10.Event notifications

© 00N OKWN

CS178 — Programming Parallel and Distributed Systems 2 Lecture 8



11.International and standardized

B. Architecture
1. CORBA places an ORB between client and server

a) ORB takes care of marshalling, unmarshalling args
b) ORB takes care of finding objects
c) ORB takes care of starting servers

d) ORB takes care of transactions, events, ...
2. Interface defininition language (IDL)

a) Used to describe objects
b) Language independent
c) Used to generate stubs and skeletons

d) Used to generate definitions for use in programs (header
files, etc.)

C. Example
1. Basic IDL

struct Rectangle {
long width;
long height;
long x;
long y;
¥
struct GraphicalObject {
string type;
Rectangle enclosing;
boolean isFilled;
¥
interface Shape {
long getVersion();
GraphicalObject getAllState();
¥
typedef sequence<Shape,100> All;
interface ShapeList {
exception FullException { };
Shape newShape(in GraphicalObject g) raises(FullException);
All allShapes();
long getVersion();
¥
2. Notes

a) Structs correspond to non-remote Java objects in RMI
b) Syntax is not C/C++/...
¢c) Remote objects again specified by interfaces

CS178 — Programming Parallel and Distributed Systems 3 Lecture 8



3. Implementation
a) Islanguage dependent

b) Is dependent on the IDL translator used

import org.omg.CORBA.*;
class ShapeListServant extends _ShapeListimplBase {
ORB theOrb;
private Shape thelList[];
private int version;
private static int n = 0;
public ShapeListServant(ORB orb) {
theOrb = orb;
/I other initializations

}
public Shape newShape(GraphicalObject g)
throws ShapelListPackage.FullExcepiotn {
version++;
Shape s = new ShapeServant(g,version);
if (n >= 100) throw new ShapelListPackage.FullException();
theList[n++] = s;
theOrb.connect(s);
return s;

}
public Shape [] allShapes() {..}
public int getVersion() {..}

}
4. Plus you need a main program for the server and the
client
a) Use CORBA naming to register the object

b) Naming is just another remote object
5. Note similarities to Java RMI

IV.COM (DCOM, OLE, ACTIVEX)

A. COM views object first, then interfaces
1. You get a handle to an object
2. Then you query what interfaces it supports

3. Then you get a handle to one of those interfaces for
the object

4. Interface = abstract class + object

CS178 — Programming Parallel and Distributed Systems 4 Lecture 8



B. Using DCOM

Client
Application

Server

DCOM

1. Client request to create object
a) DCOM looks in registry (all servers must be registered)
b) DCOM locates the implementation
(1) Can be shared library, local/remote server
(2) DCOM starts up server if necessary
c) Factory in server creates object
d) Factory returns interface to DCOM
e) Interface returned to client
2. Interface used to make calls
a) Directly to server
3. Registry
a) Needs to know about interfaces, servers, objects
b) Unique IDs (UIDs) created by each - uuidgen utility
c) Definition file defines the interface

C. Example : Remote calculator

1. Interface Definition

[
uuid(3e47c00e-6bf6-17e1-8514-0800207ebd7f),

object,

pointer_default(unique),

helpstring("Remove calculator sample application™)
]
interface ISimCalc : lUnknown {

import "unknwn.idl";

HRESULT clear();

HRESULT enter([in] float value);

HRESULT add([in] float value);

CS178 — Programming Parallel and Distributed Systems 5 Lecture 8



HRESULT sub([in] float value);

HRESULT result([out] float * value);
}

uuid(3e47c00e-6bf6-17e1-8cb2-0800207ebd7f),
version(1.0),

Icid(9),

helpstring("Simple Calculator Demo")

]
a) Methods return HRESULT (S_OK or S_FAIL)

b) Out parameters done via pointers

c) Strings done via OLECHAR * (wide strings)

2. Define the library that implements this
library SimCalcLib {
importlib("stdole32.tlb");
[
uuid(3e47c00e-6bf6-17e1-9b42-0800207ebd7f),
helpstring("Simple calculator demo implementation™)

]

coclass CSimCalc {
interface ISimCalc;
}

}
a) This associates an implementation class with interface
3. Define the server

a) Implement CSimCalc as a standard C++ class

class CSimCalc : public ISimCalc {

private:
double cur_value;

public:
CSimCalc();
~CSimCalc();
HRESULT clear();
HRESULT enter(float value);
HRESULT add(float value);
HRESULT sub(float value);

HRESULT result(float * value);
3

... { Implementation of these methods }

b) Define the actual server

class SimCalcServer : public DcomServer {
private:
DWORD simcalc_obj;
public:
SimCalcServer();
const char * serverName() const { return "SimCalc"; }
HRESULT registerObjects();

CS178 — Programming Parallel and Distributed Systems 6 Lecture 8



HRESULT revokeObjects();
HRESULT registerClasses();
HRESULT revokeClasses();

3
(1) These are implemented using calls to DcomServer
(2) Effectively keep track of the unique simcalc object
(3) Associate its UID with the object
c) Define the main line for the server
(1) Create a SimCalcServer instance
(2) Call its setup and process methods
4. Define the client object

class SimCalcClient : public DcomClient {
private:
ISimCalc * sc_interface;
public:
SimCalcClient();
const char * clientName() const { return "SimCalcTest"; }
ISimCalc * getinterface();

¥
a) ISimCalc interface is automatically generated from IDL

b) Code for implementing this:
return (ISimCalc *) createObject(CLSID_CSimCalc,IID_ISimCalc);

5. Use the client
a) call client.setup() method to indicate its host and register
b) Get the interface you want using getinterface
c¢) Call methods on that interface

D. Notes
1. The calls are generally handled in separate threads

V. Shared Memory

A. Same machine
1. MMAP/SHM primitives
2. Sync primitives work across processes
3. Much like multithreaded programming

B. Going beyond one machine
1. Apollo -- using file-based sharing

a) This worked because there was no cache, processors were
slower

CS178 — Programming Parallel and Distributed Systems 7 Lecture 8



2. Modern implementations are built on message passing
C. Granularity options
1. Page -- typically what is done
a) Problems with alignment, multiple items/page, etc.

b) Hardware support via virtual memory
2. Object

a) Work at the object level
b) Allows for finer grain control, etc.
c) Butdoesn’t have hardware support
D. Consistency options
1. Atomic consistency

a) Can view each operation as atomic and can order them
linearly based on real time of execution

b) Too difficult to implement efficiently
2. Sequential consistency

a) Can view each operation as atomic and can order them
based on relative time within each process

b) Typically used in most implementations
c) Still quite expensive
3. Coherence
a) Each process agrees to order of writes on each location

b) Processes might differ with different locations
4. Weaker consistency constaints also used

a) Consider
E. Update options
1. Write-update

a) All writes to shared memory are make locally and multi-
cast to all other replicas

b) Problems with multicast performance

c) Order of multicast affects consistency
2. Write-invalidate

a) Single writer or multiple readers

CS178 — Programming Parallel and Distributed Systems 8 Lecture 8



b) Essentially writer needs to get a lock on the page

F. Practical issues
1. While this is a cleaner model, it is difficult to scale
2. Several research systems exist that implement this

a) Insome cases can match performance of message passing
b) But generally not

¢) And this works only for limited numbers of processors
3. Can be a simpler way of programming however

CS178 — Programming Parallel and Distributed Systems 9 Lecture 8



	Lecture 8: Beyond Java RMI
	CS178: Programming Parallel and Distributed Systems
	February 21, 2001
	Steven P. Reiss
	I. Overview
	A. Client-server computing is widely used
	1. Server generally controls a shared resource
	2. Clients want access to that shared resource

	B. Resource access is generally done via messages
	1. Machines are widely distributed
	2. Messages form the communication mechanism
	3. Sockets form the basis for sending/receiving messages

	C. Message passing is fairly low-level
	1. We thus build higher-level abstractions on top of it
	a) RPC
	b) Remote object invocation (OO RPC)

	2. And try to incorporate this into a language
	a) Java RMI
	b) NIL and messages


	D. This time -- other alternatives

	II. Java RMI notes
	A. Multiple threads
	1. Generally each RMI request is handled by a separate thread
	2. You have to provide any synchronization for these threads

	B. Generating stubs and skeletons
	1. Recall how RMI handles remote objects
	a) Client makes a call; call translated in messages
	b) Arguments are marshalled, etc.
	c) Server gets messages, unmarshalls arguments
	d) Server calls method on actual object
	e) Return value sent back as message
	f) Return message translated into value and returned

	2. Non-remote objects handled by serialization
	a) All passed objects must be serializable
	b) Objects read/written -- beware of static/transient fields

	3. In order to do this you need to have
	a) Stub in the client to translate the calls, handle return
	b) Skeleton in server to translate messages, make call

	4. Where do these stubs and skeletons come from
	a) In java they are dynamically loaded by RMI package
	b) This is done invisibly and automatically
	c) But they still need to be generated

	5. RMIC -- RMI compiler does this
	a) First compile the classes
	b) Then rmic -d <output> class class ...



	III. CORBA
	A. Objectives
	1. Provide object-based distributed computing
	a) Based on a robust object model
	b) Language independent

	2. Distribution transparency
	3. Performance
	4. Extensible and dynamic behavior
	5. Naming system architecture
	6. Concurrency control
	7. Transactions
	8. Robust and highly available
	9. Versioning
	10. Event notifications
	11. International and standardized

	B. Architecture
	1. CORBA places an ORB between client and server
	a) ORB takes care of marshalling, unmarshalling args
	b) ORB takes care of finding objects
	c) ORB takes care of starting servers
	d) ORB takes care of transactions, events, ...

	2. Interface defininition language (IDL)
	a) Used to describe objects
	b) Language independent
	c) Used to generate stubs and skeletons
	d) Used to generate definitions for use in programs (header files, etc.)


	C. Example
	1. Basic IDL
	2. Notes
	a) Structs correspond to non-remote Java objects in RMI
	b) Syntax is not C/C++/...
	c) Remote objects again specified by interfaces

	3. Implementation
	a) Is language dependent
	b) Is dependent on the IDL translator used

	4. Plus you need a main program for the server and the client
	a) Use CORBA naming to register the object
	b) Naming is just another remote object

	5. Note similarities to Java RMI


	IV. COM (DCOM, OLE, ACTIVEX)
	A. COM views object first, then interfaces
	1. You get a handle to an object
	2. Then you query what interfaces it supports
	3. Then you get a handle to one of those interfaces for the object
	4. Interface = abstract class + object

	B. Using DCOM
	1. Client request to create object
	a) DCOM looks in registry (all servers must be registered)
	b) DCOM locates the implementation
	(1) Can be shared library, local/remote server
	(2) DCOM starts up server if necessary

	c) Factory in server creates object
	d) Factory returns interface to DCOM
	e) Interface returned to client

	2. Interface used to make calls
	a) Directly to server

	3. Registry
	a) Needs to know about interfaces, servers, objects
	b) Unique IDs (UIDs) created by each - uuidgen utility
	c) Definition file defines the interface


	C. Example : Remote calculator
	1. Interface Definition
	a) Methods return HRESULT (S_OK or S_FAIL)
	b) Out parameters done via pointers
	c) Strings done via OLECHAR * (wide strings)

	2. Define the library that implements this
	a) This associates an implementation class with interface

	3. Define the server
	a) Implement CSimCalc as a standard C++ class
	b) Define the actual server
	(1) These are implemented using calls to DcomServer
	(2) Effectively keep track of the unique simcalc object
	(3) Associate its UID with the object

	c) Define the main line for the server
	(1) Create a SimCalcServer instance
	(2) Call its setup and process methods


	4. Define the client object
	a) ISimCalc interface is automatically generated from IDL
	b) Code for implementing this:

	5. Use the client
	a) call client.setup() method to indicate its host and register
	b) Get the interface you want using getInterface
	c) Call methods on that interface


	D. Notes
	1. The calls are generally handled in separate threads


	V. Shared Memory
	A. Same machine
	1. MMAP/SHM primitives
	2. Sync primitives work across processes
	3. Much like multithreaded programming

	B. Going beyond one machine
	1. Apollo -- using file-based sharing
	a) This worked because there was no cache, processors were slower

	2. Modern implementations are built on message passing

	C. Granularity options
	1. Page -- typically what is done
	a) Problems with alignment, multiple items/page, etc.
	b) Hardware support via virtual memory

	2. Object
	a) Work at the object level
	b) Allows for finer grain control, etc.
	c) But doesn’t have hardware support


	D. Consistency options
	1. Atomic consistency
	a) Can view each operation as atomic and can order them linearly based on real time of execution
	b) Too difficult to implement efficiently

	2. Sequential consistency
	a) Can view each operation as atomic and can order them based on relative time within each process
	b) Typically used in most implementations
	c) Still quite expensive

	3. Coherence
	a) Each process agrees to order of writes on each location
	b) Processes might differ with different locations

	4. Weaker consistency constaints also used
	a) Consider


	E. Update options
	1. Write-update
	a) All writes to shared memory are make locally and multicast to all other replicas
	b) Problems with multicast performance
	c) Order of multicast affects consistency

	2. Write-invalidate
	a) Single writer or multiple readers
	b) Essentially writer needs to get a lock on the page


	F. Practical issues
	1. While this is a cleaner model, it is difficult to scale
	2. Several research systems exist that implement this
	a) In some cases can match performance of message passing
	b) But generally not
	c) And this works only for limited numbers of processors

	3. Can be a simpler way of programming however





