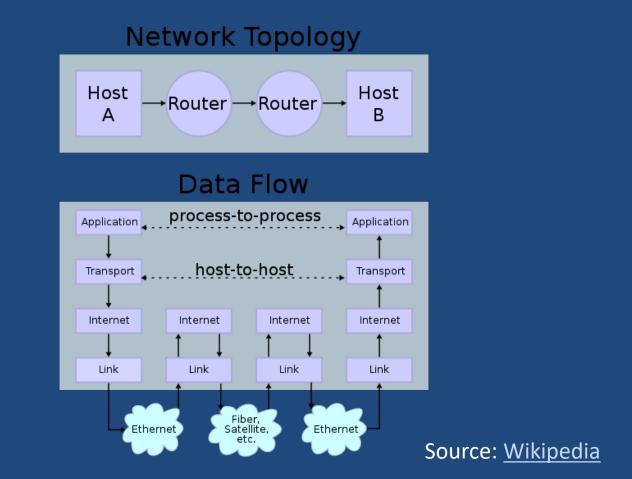
CSCI 1800 Cybersecurity and International Relations Design and Operation of the Internet John E. Savage Brown University

Outline

- Internet Conceptual Layers
- Link layer
- Network layer
- Transport layer
- Denial of service
- Open Source Software
- Huawei Telecommunications Technology

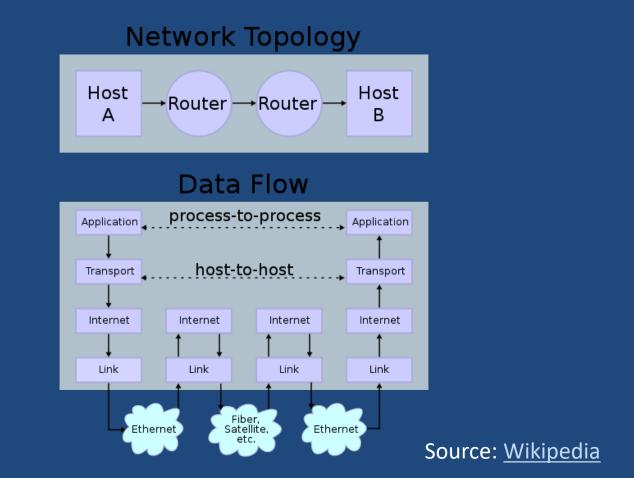

Notes on This Lecture

- It describes the operation of the Internet
- It is not necessary to commit all of it to memory
- Get the big picture and consult the notes when you need them.

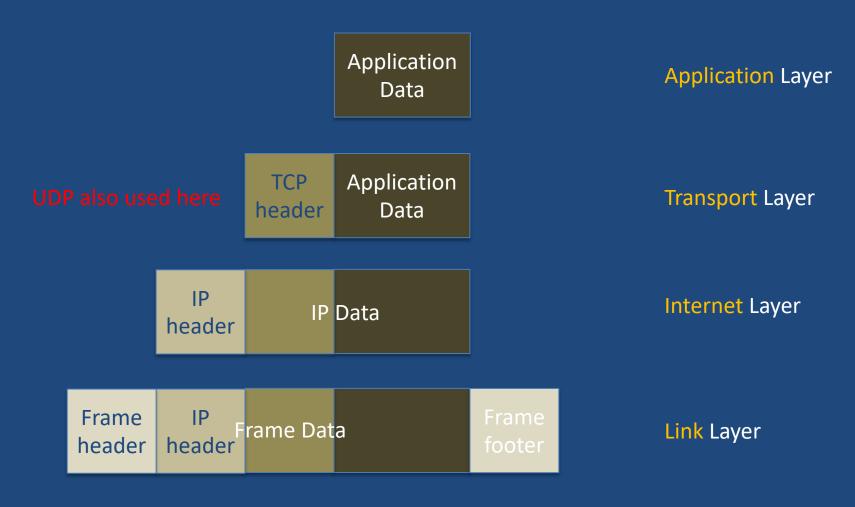
The Internet

- The Internet is a collection of networks.
 - Networks connect hosts, i.e. individual computers.
 - Networks are local, area-wide, enterprise-wide, and national
- Protocols govern data transmission on networks
 - A protocol defines a way to package data
 - E.g. Include source, destination, & content and (often) error checking
 - Ethernet (1973) link & physical layers collision detection
 - Internet protocol (IP) (1974) Internet layer decomposes data streams into packets. Sends them via packet switching.
- Protocols are layered, one communicating to next
 - They simplify implementation of the Internet

Sending Data via Protocol Layers



Conceptual Internet Protocol Layers


- Physical Layer
 - At level of wires, cables, radio physical data transmission
- Link Layer
 - Logical level, organizes data into blocks, choose routes.
- Internet or network Layer
 - Makes best effort to move packets using Internet Protocol (IP)
- Transport Layer
 - TCP* (reliable) and UDP⁺ (fast, no guarantees) protocols are here
- Application Layer
 - Application protocols such as HTTP and HTTPs for browsers, DNS for naming, SSL for secure communication, VoIP for phone

* TCP: Transmission Control Protocol+ UDP: User Datagram Protocol

Sending Data via Protocol Layers

Internet Packet Encapsulation by Layer

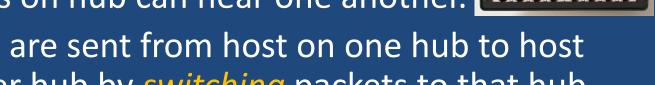
Network Security Goals - CIA⁴

- Confidentiality
 - Keep content private
- Integrity
 - Ensure that content is not altered
- Availability
 - Ensure content is available
- Assurance
 - Enforce data flow policies, e.g. firewall configurations, rules, etc.
- Authenticity
 - Authenticate users via signatures
- Anonymity
 - Guarantee anonymity when needed

- Big Three – CIA

Ethernet – At the Link Layer

- <u>Data</u> organized into frames. Each has
 - Header of 175 bytes (8 bits/byte)
 - Payload of 46 to 1,500 bytes
 - Footer contains a 4-byte checksum
 - What is the role of the checksum?
- **Operation**: If a host wants to send a frame:
 - Waits until no signals heard & transmits one bit of one frame
 - Listens for collisions between its bit and bits of others.
 - If collision detected, wait a random time and retransmit
 - If no collisions detected during packet transit time, success.


- Transmits remaining bits in frame in same manner.

Ethernet Hubs and Switches

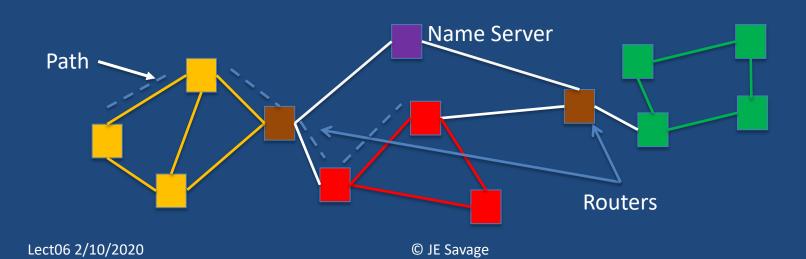
 Ethernet hub connects multiple hosts All hosts hear messages sent by others

- Ethernet switch has multiple hubs connecting multiple hosts.
 - Only hosts on hub can hear one another.

 Messages are sent from host on one hub to host on another hub by *switching* packets to that hub.

Media Access Control Addresses

- Each device has a network interface, the place where connects to a network.
 - Each network interface has a MAC address.
 - A MAC address is generally a *unique* 48-bit string assigned by a manufacturer.
 - Although on modern computers, a MAC address can be changed under software control.
- MAC addresses are used by Ethernet switches.

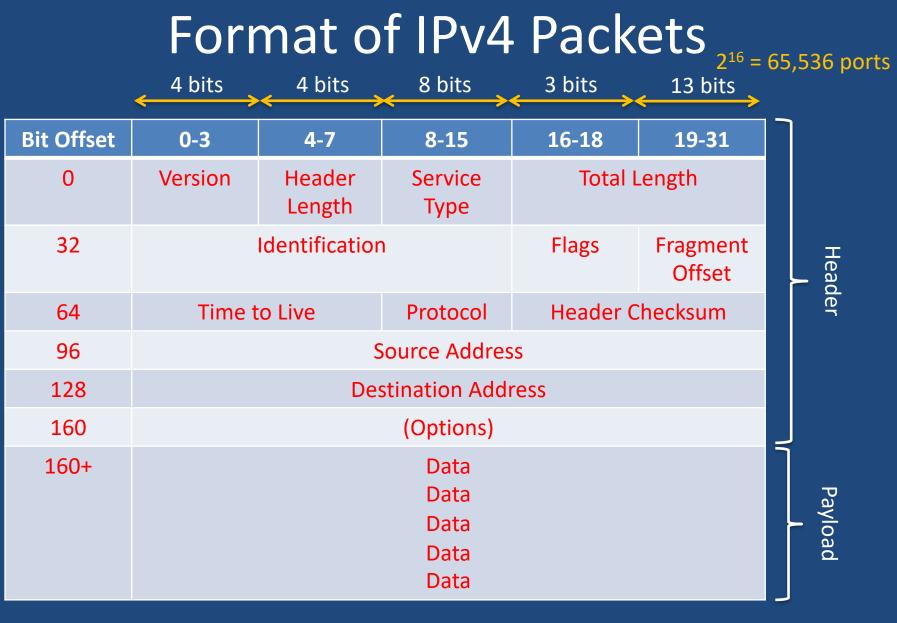

Address Resolution Protocol (ARP)

- ARP link-layer protocol on local area network (LAN)
- <u>To send a packet</u> to an IP address on the LAN:
 - a. If sender knows local address (usually MAC), send to it.
 - b. If not, sender broadcasts IP address on LAN asking owner to reply with its MAC address. Then go to a.
- Spoofing of ARP is possible to create MTM attack
 - When Alice makes request intended for Bob, Eve responds with her MAC address before Bob responds
 - When Bob makes a request intended for Alice, Eve responds with her MAC address before she responds
 - Now communication between Alice & Bob is via Eve

The Internet Protocol (IP)

- IP makes best effort to send packets between source and destination addresses.
- Addresses are 32-bits (IPv4) or 128-bits (IPv6).

 $2^{32} = 4 \cdot 2^{30}$ or about $4 \cdot 10^9$ $2^{128} = 64 \cdot 2^{120}$ or about $64 \cdot 10^{36}$



Packet Transmission

- ARP used to send packets within local area net (LAN)
- Packets for an IP address on remote LAN are sent to LAN Internet gateway, then to remote LAN.
- Gateways are also called routers.
- Routers use routing tables to direct packets.
 - For each IP address, a table specifies a neighbor to receive the packet.
 - To prevent looping, each packet has a time-to-live (TTL) value. It is decreased by one each time it passes through a router. When TTL = 0, packet is discarded.

Packet Routing

- Routers quickly drop, deliver or forward packets.
 - Drop if TTL =0, deliver if dest. is on LAN; forward if not
- Packet forwarding protocol is via one of these:
 - Open Shortest Path First (OSPF) or
 - Border Gateway Protocol (BGP)
- BGP also routes packets between autonomous systs
- Note: A LAN hub/switch is simple. A router is not. It is complex & must handle complex routing policies.

Format of IP Packets

- Header checksum identifies transmission errors
 Checksum recomputed every time TTL decremented.
- IPv4 address 4 bytes or 32 bits, eg 128.148.32.5
 - A byte (8-bits) specifies an integer in range [0-255].
- IPv6 address 8 sets 4 hexadecimals or 128 bits
 - Hexadecimals: [0,1,2,...,9,a,b,...,f] (16 chars, 4 bits)
 - -e.g. 2001:0db8:85a3:0000:0000:8a2e:0370:7334

Refresher on Binary Numbers

Decimal Numbers	Binary Representation
	2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰
0	0 0 0 0 0 0 0 0
1	0 0 0 0 0 0 1
2	0 0 0 0 0 0 1 0
3	0 0 0 0 0 0 1 1
4	0 0 0 0 1 0 0
5	0 0 0 0 1 0 1
6	0 0 0 0 1 1 0
7	0 0 0 0 0 1 1 1
8	0 0 0 1 0 0 0
16	0 0 0 1 0 0 0 0
128	1 0 0 0 0 0 0 0
255	1 1 1 1 1 1 1 1

More on Format of IP Packets

- A domain or prefix defines a block of IP addresses that is associated with a subnetwork or autonomous system (AS).
- A domain is specified thus: (IP address)/(integer) and assigned to an autonomous system.
 - E.g. 128.148.32.5/24 specifies the IPv4 addresses beginning with the first 24 address bits of 128.148.32.5

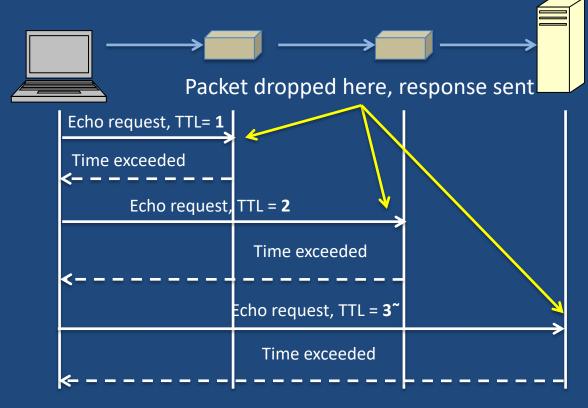
— What are the first 24 bits? 1000000 10110000 00100000 ------

- The domain contains the addresses 128.148.32.0, 128.148.32.1, ..., 128.148.32.255.
- Since there are 2⁸ = 256 choices for the last 8 = 32-24 bits, this prefix defines 256 addresses in the subnetwork.

Conceptual Internet Layers

- Physical Layer
 - At level of wires, cables, radio physical data transmission
- Link Layer
 - Logical level, organizes data into blocks, choose routes.
- Internet or network Layer
 - Makes best effort to move packets using Internet Protocol (IP)
- Transport Layer
 - TCP (reliable) and UDP (no guarantees) protocols are here
- Application Layer
 - Applications protocols are here. They include HTTP and HTTPs for browsers, DNS for naming, SMTP & IMAP for email, SSL for secure communication, and VoIP for phone service

Internet Control Message Protocol


- ICMP is network layer protocol for testing and error notification. <u>Message types</u>:
 - Echo request asks destination to acknowledge
 - Echo response acknowledges receipt of packet
 - Time exceeded sends notification that TTL = 0
 - Destination unreachable packet not delivered
- Ping uses ICMP to tell if machine reachable
 - It repeatedly sends an ICMP packet to an IP address

PING princeton.edu (140.180.223.22): 56 data bytes 64 bytes from Princeton.EDU (140.180.223.22): icmp_seq=1 ttl=243 time=11.3 ms 64 bytes from Princeton.EDU (140.180.223.22): icmp_seq=2 ttl=243 time=12.2 ms

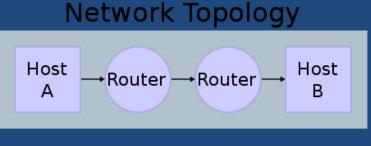
...

Traceroute

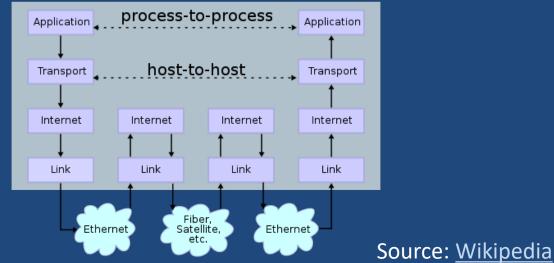
 Traceroute uses ICMP to trace path from source to destination.

Traceroute Example

- traceroute to princeton.edu (140.180.223.22), 30 hops max, 60 byte packets
- 1 10.116.52.1 (10.116.52.1) 1.414 ms 1.515 ms 1.716 ms
- 2 commodus-int.cs.brown.edu (10.116.1.5) 0.171 ms 0.160 ms 0.150 ms
- 3 138.16.160.253 (138.16.160.253) 1.897 ms 1.898 ms 1.905 ms
- 4 vl2062-ddmz-cit-r.net.brown.edu (10.1.18.1) 0.904 ms 0.923 ms 0.907 ms
- 5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 0.969 ms 0.961 ms 1.198 ms
- 6 131.109.202.1 (131.109.202.1) 1.885 ms 1.825 ms 2.112 ms
- 7 bostonlight.oshean.org (198.7.255.1) 3.248 ms 3.566 ms 3.565 ms
- 8 nox300gw1-oshean-re.nox.org (192.5.89.125) 3.541 ms 3.506 ms 3.490 ms
- 9 i2-re-nox300gw1.nox.org (192.5.89.222) 7.809 ms 8.164 ms 8.105 ms
- 10 216.27.100.5 (216.27.100.5) 10.280 ms 10.218 ms 10.197 ms
- 11 remote1.princeton.magpi.net (216.27.98.114) 11.261 ms 11.253 ms 11.226 ms
- 12 core-87-router.Princeton.EDU (128.112.12.130) 11.919 ms 12.503 ms 12.150 ms
- 13 Princeton.EDU (140.180.223.22) 11.505 ms 11.498 ms 11.489 ms


IP Spoofing

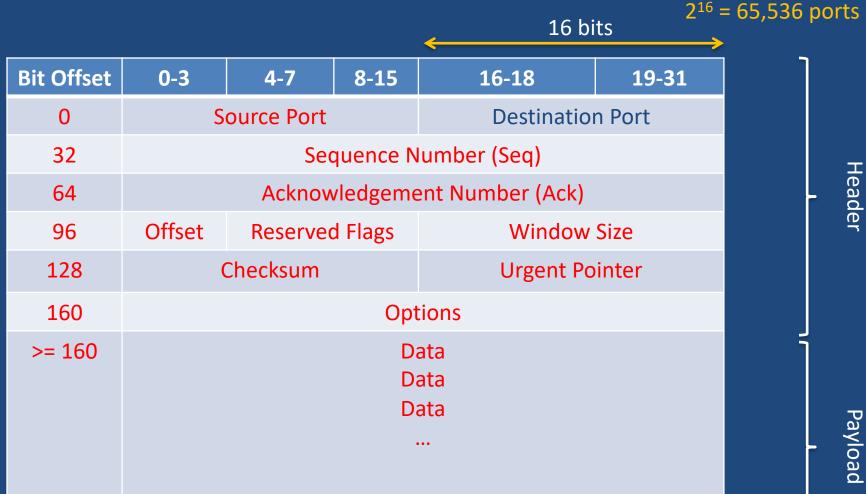
- Host/router can change Source Address in a packet.
 - Can be used in denial of service attack.
 - If ICMPs are sent to many destinations with the same spoofed source address, all will respond to spoofed source, swamping it.


• Coping with IP spoofing:

- Routers should drop a packet entering a domain with source address from inside that domain.
- Should also drop leaving packets whose source is outside
- If routers log packets passing through them, which is not always done, can trace spoofed packets back to a source.

Protocol Layers Again

Data Flow

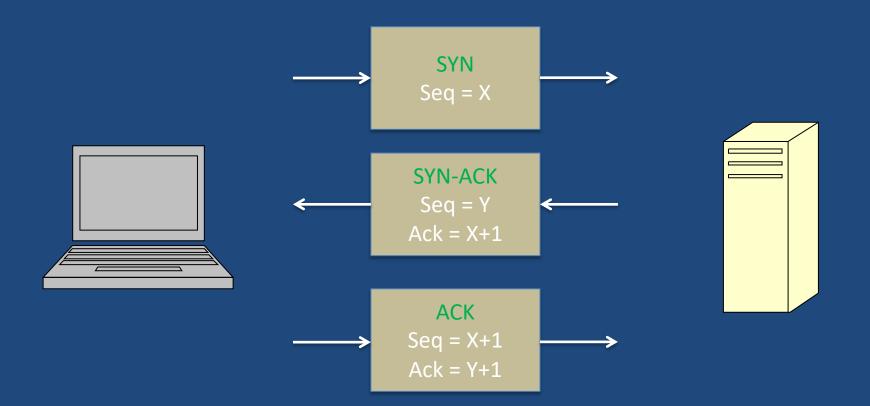


Transport Layer Protocols

- They connect process at a port of <u>local</u> IP address to a process at a port of a <u>remote</u> IP address. 2¹⁶ ports.
- TCP and UDP are primary protocols at this layer.
- Transmission Control Protocol (TCP) provides reliable packet stream between ports. Repeat packets if lost.
 What should it be used for? files, web pages, email
- User Datagram Protocol (UDP) provides best-effort communication between ports. Send it and forget it

 Used for VoIP and apps where lost bytes not important.

TCP Packet Format


Port 80 for HTTP, 21 for FTP, 22 for SSH, for example.

Header

Transmission Control Protocol (TCP)

- TCP/IP connects to destination using three-way handshake.
 - Each packet has a sequence number so that packets can be assembled in order.
 - If a packet is not acknowledged during a congestion window (a reasonable round-trip time) it is repeated. Thus, copies of packets can be in network.
 - The sender uses flow control (<u>adjusts window</u>) to avoid overwhelming the receiver.
 - If payload checksum fails, receiver rejects packet.

Three-Way TCP Handshake

TCP Three-Way Handshake

- Establishes connection between source/dest.
- Source S sends destination D a packet with SYN flag on and random sequence number Seq = X.
- 2. D sends S a packet with both SYN and ACK flags on adds a random sequence number Seq = Y, and an acknowledgement number Ack = X+1. (S checks X)
- 3. S sends D a packet with SYN flag off, ACK flag on, Seq = X+1 and Ack = Y+1. (D compares Ack to Y.) If successfully completed, TCP connection is made.
- Random values for X and Y help defeat attacks.

User Datagram Protocol (UDP)

- Header includes source and destination ports, length, checksum, and payload
- Designed for speed, not accuracy.
- Used for time-sensitive tasks such as
 DNS and Voice over IP (VoIP)

Network Address Translator (NAT)

- NAT used when insufficient IPv4 addresses available
- A NAT is hardware that maps one external IP address into multiple internal IP addresses.
- Each internal IP address is assigned a unique port number of the external IP address.
- When packet sent back to the IP address, its port number is used to lookup is internal IP address.

The packet IP address is changed to the internal one.

 A NAT hides internal IP addresses – protects against random hits

Denial of Service (Flooding) Attacks

- Because bandwidth is limited, many packets directed to a client, can overwhelm client.
 - ICMP attacks
 - SYN flood attacks
 - Optimistic TCP attacks
 - Distributed denial of service (DDoS) attacks
 - Denial of service from many sites, such as botnet.
- Can defend against DDoS via IP tracebacks or more sophisticated automatic techniques.

ICMP Attacks

- Ping Flood Attack attacker floods victim with pings (ICMP packets)
 – Attacker can be much more powerful than victim.
- SMURF attack attacker sends ICMP packet with spoofed address to network broadcast site.
 - All sites on network respond to spoofed site.

SYN Flood Attacks

- Attacker opens many TCP sessions by sending SYN packets to a victim without replying to SYN/ACK packets from the victim.
- Victim keeps list of SYN seq numbers in memory so that it can synchronize sessions.
- If too many sessions are opened, victim's memory fills up, blocking other TCP sessions.
 <u>– Routers can be redesigned to avoid this.</u>

Open Source Software (OSS)

• Proprietary software is kept confidential

– E.g. Apple iPhone software is proprietary. Google
 Android phone software is OSS

- OSS is software available for use by others
 - It can be used in products, modified and shared.

Some OSS licenses require that a copy of modified code be placed in the OSS repository.

Internet applications rely heavily on OSS

Open Source Software (OSS)

- A debate is ongoing whether OSS is a good idea
- Pluses:
 - OSS allows software engineers to write code quickly
 Publicity may lead to catching more bugs
- Minuses:
 - Untrained engineers will not find bugs
 - Bugs in OSS that is widely used can create crises when discovered
 - E.g. Heartbleed OpenSSL bug introduced 2012, found 2014

Huawei Communication Technology

- The US government does not want Huawei 5G telecommunications hardware and software in US networks nor those of partner countries
- 5G offers very high data rates but signals don't penetrate thick walls.
- Security concerns:
 - Huawei systems could be used for espionage
 - Their code is of poor quality and vulnerable
 - China's National Intelligence Law requires cooperation

They could disable networks during conflict

Review

- Internet Conceptual Layers
- Link layer
- Network layer
- Transport layer
- Denial of service
- Open Source Software
- Huawei Telecommunications Technology