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The Cryptographic Problem

• Goal: Alice needs to communicate securely with 
Bob, but Eve listens or interferes with conversation.

• Approach: Alice and Bob encrypt messages (they 
create ciphertexts) to keep them secure from Eve.

• Eve engages in cryptanalysis, tries to break cipher.
• Security by obscurity is dangerous. Once obscure 

method is discovered, all secrets are lost.
• Better to assume encryption method is known but 

that keys remain secret. Keys can be changed.
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Three Types of Notation
Decimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111
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Hex Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Decimal Binary Octal

0 000 000 0 0

1 000 001 0 1

2 000 010 0 2

3 000 011 0 3

4 000 100 0 4

5 000 101 0 5

6 000 110 0 6

7 000 111 0 7

8 001 000 1 0

9 001 001 1 1

10 001 010 1 2

11 001 011 1 3

12 001 100 1 4

13 001 101 1 5

14 001 110 1 6

15 001 111 1 7

16 010 000 2 0



American Standard Code for 
Information Interchange (ASCII)
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Message Fragment in Binary

• Map message: no mon no fun to ASCII
• n 156          o 157         (space) 040
• 001 101 111  001 101 111  000 100 000 
• m 155         o 157         n 156        (space) 040
• 001 101 101  001 101 111   001 101 111  000 100 000
• n 156         o 157        (space) 040
• 001 101 110  001 101 111  000 010 000
• f 146          u 165        n 156
• 001 010 110  001 110 101  001 101 111
• Concatenate bits to form integer message M = 0011011…
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Symmetric Cryptography

• They agree on a common encryption method.
• Both Alice and Bob have the same secret key.
• Convert a text message to an integer M.
– Example: no mon no fun
– \156\157\040\155\157\156\040\156\157\040\146\165\156
• Slashes between octal triplets are for humans only

– M = 001 101 110 001 101 111 000 100 111 …
• Encrypt M as C = EK(M) using function E and key K.
• Decrypt C same way, M = EK(C). K is secret. Symmetric!
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Eve Attempts to Get Secret Key

• Ciphertext-only attack (least info)
– Eve only has ciphertext.

• Known-plaintext attack
– Eve is given plaintext-ciphertext pair(s).

• Chosen-plaintext attack
– Eve chooses plaintext(s), gets ciphertext(s). 

She may choose plaintexts adaptively.
• Chosen-ciphertext attack (most info)
– Eve chooses ciphertext, gets plaintext.
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Ciphers Introduced in Today’s Lecture

• Substitution ciphers
• Polygraphic substitution ciphers
• One-time pads
• Binary one-time pads
• Advanced encryption standard (AES)
• Public-key cryptography (RSA)
• Digital signatures and hash functions
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Substitution Ciphers

• Substitution ciphers permute letters in alphabet
– E.g. Caesar replaced a letter by one three places 

away in the Latin alphabet.
– Caesar(3): a b c d … x y z is replaced by d e f g … a b c

• General substitution cipher – map letters in an 
alphabet to a fixed permutation of the alphabet.
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Frequency of Letters in English
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Breaking Substitution Ciphers

• Substitution ciphers are easily broken
• Compute the frequency of each letter
– Find the most frequent letter, let’s call it a. 
– Almost certainly e maps to a with frequency ~12%
– Find the second most frequent letter, b. 
– Almost certainly t maps to b with freq. ~ 9%

• Check words that result and fix mapping.
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Vigenère Cipher

• Vigenère cipher (1586) is a polygraphic cipher on 
blocks of  m letters. Given m letters (l1,l2, …, lm), lj
is shifted cyclically by kj places for 0 ≤ kj ≤ 25.
– If m = 3, k1 = 2, k2 = 1, k3 = 3, (a,g,z) mapped to (c,h,c). 
– Let’s encrypt attackatdawn
– (a,t,t)(a,c,k)(a,t,d)(a,w,n)      (c,u,w)(c,d,n)(c,u,g)(c,x,p)
– Encrypted message is cuwcdncugcxp
– If m is reasonably small, easily broken by statistics.
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Vigenère Cipher

• If m is reasonably small, the Vigenère cipher is easily 
broken by statistics.
– How would you do that?

• The integers can be derived from a text string
– thequickbrownfoxjumpsoverthelazydog
– Start alphabet at 0; a ↔0, b ↔1, …, t ↔19, …, z ↔25,
– 19 7 4 16 20 8 2 10 1 17 14 22 13 5 14 23 9 20 12 15 18 14 

21 4 17 19 7 11 0 3 14 6
– Does this look like a random string?

• How many times are digits repeated?
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One-Time Pad

• One-time pad (Miller 1882) uses m random 
integers  {kj | 1 ≤ j ≤ m}, 0 ≤ kj ≤ 25, to shift 
letters in a string of length ≤ m.
– The jth letter is shifted by kj positions.
• A real one-time pad might have edible pages of digits.

– Both sender and receiver need to know shifts
– Provides perfect security when m ≥ message length
– Fails when pad is reused or string is longer than m.
• One-time pad encryption broken during Cold War.
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Binary One-Time Pad Again

• Message represented as n-bit binary string.
– E.g. M = 010011 (a vector)

• Generate random n-bit string K (the key or one-time pad)
– E.g.  K = 100110 (a vector)

• XOR (Å) is defined as 1Å0 = 0Å1=1 and 0Å0 = 1Å1=0 
• XOR message M with key K bit-by-bit to encrypt as X.     

X = EK(M) = MÅK
– E.g. EK(M) = (0Å1) (1Å0) (0Å0) (0Å1) (1Å1) (1Å0) = 110101

• Decrypt by encrypting X with K
EK(X) = XÅK = (MÅK)ÅK = MÅ(KÅK) = MÅ0 = M
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Reuse of One-Time Pad Dangerous
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XORing Two Encrypted Images
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⊕ =

C1 = K Å M1 C2 = K Å M2 C1 Å C2 = M1 Å M2



Pseudo-Random Number Generators

• It is expensive to produce true random nos.
• Pseudo-random number generators (PRNGs) 

generate numbers that “look” random.

• Encryption algorithms can be used as PRNGs.
– Encrypt a fixed string and represent it in binary
– E.g. E(attackatdawn) = 0100110101001110110
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Advanced Encryption Standard (AES)
(Rough Sketch)

• AES (circa 2001) is a symmetric cipher whose 
inputs and outputs are 128-bit blocks. It uses an 
encryption key K of length 128, 192 or 256 bits, 
denoted AES-128, AES-192, AES-256.
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Advanced Encryption Standard (AES)

• When K has 128 bits, AES computes X0 = MÅK and 
then executes 10 rounds.
– Each round does a substitution, permutation, mixing of 

results, and an XOR’ing step. 
– It is too complicated to explain here.

• AES is highly secure but can be attacked using the 
time spent computing – this is a side channel attack

• In 2010 AES-256 was considered highly secure.
• AES-192 and AES-256 approved for US Top Secret!
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Public-Key Cryptography

• Each party has public & private keys
– Alice: PrivAlice, PubAlice; Bob: PrivBob, PubBob.

• Alice encrypts message M for Bob with
X =  EK(M) where K = PubBob.

• Bob decrypts Alice’s encrypted message with 
M = EK*(X) where K* = PrivBob. 

• Decrypt using same algorithm E with private key
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Origin of Public-Key Cryptography

• James Ellis, Clifford Cocks, Malcolm Williamson, 
invented it at GCHQ (British intelligence agency) 
by 1973, made public in 1997

• Diffie and Hellman propose idea publicly in ’76.
• Rivest, Shamir and Adleman (RSA) gave first 

practical implementation in 1977.
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* http://en.wikipedia.org/wiki/Public-key_cryptography



Symmetric vs Public Key Crypto

• Symmetric key system has one key per user pair
– Thus, there are n(n-1)/2 (pairs) keys for n users
– If n = 104, that’s about 50x106 keys!

• In public-key system, 2n keys suffice. 
– Each party publishes one key, keeps other secret

• Symmetric key system faster than public key.
– PK systems often used to create/exchange secret 

symmetric keys
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RSA Public-Key System

• Modular arithmetic
– add and multiply integers modulo n
– result is the remainder after dividing by n.
– E.g. (3+4) mod 5 = 2, (4*3) mod 3 = 0

• Bob’s public key PubB is the integer pair (e,n).
• Bob’s secret key is PrivB = d. n = pq, two primes
• Require that e, d, and n satisfy

Xde mod n = X for any integer X in {0,1,2,…n-1}, 
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RSA Public-Key System

• Alice encrypts M for Bob as C = Me mod n
– Recall PubB = (e,n)

• Bob decrypts C by computing Cd mod n = M. 
This follows because

Cd mod n = (Me)d mod n = Mde mod n = M
• Bob can also encrypt M as C = Md mod n and 

decrypt with Ce mod n because 
Ce mod n = (Md)e mod n = Mde mod n = M!
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Security of RSA

• Security dependent on difficulty of finding d 
given e and n. 

• Security closely tied to factoring n. So far integer 
factorization is considered very hard to do.

• A mathematical proof of security of RSA is a very 
important open problem.
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Cryptographic Hash Functions

• A cryptographic hash function compresses a 
message M into fixed-length sequence H(M). 
Mapping is one-way and collision-resistant.
– A function is one-way if it is computationally difficult 

to find M given H(M).
– It is weakly collision-resistant if it is difficult to find a 

message M’ with H(M’) = H(M) given just H(M).
– It is strongly collision-resistant if is difficult to find 

both M and M’ with H(M’) = H(M).
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Digital Signatures

• A digital signature of a message is a way for an 
entity to prove that the sender sent message M.

• Alice computes H(M), hash of M, and forms 
SAlice(M) by encrypting H(M) with her private key.

• She sends Bob (M, SAlice(M)). 
• Bob confirms that M has not changed in transit 

and that Alice sent it but computing H(M) and 
comparing it to the decryption of SAlice(M)) with 
her public key.
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Diffie-Helman Key Exchange

• Symmetric encryption is much faster than 
public-key encryption.

• Diffie and Helman invented a technique that 
two parties can use to agree on a secret key

• Both parties can use this key for symmetric 
encryption.
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Diffie-Helman Key Exchange

• B & A choose prime p & primitive root g mod p.
– g is primitive if for each r integer in {0,1,2,…, p-1}, r 

satisfies r = gk mod p for some integer k.
• Alice’s secret is a and Bob’s secret is b.
– A sends r = ga mod p to B.
– B sends s = gb mod p.
– A computes sa mod p. 
– B computes rb mod p.

• Let Q = sa mod p = (gb mod p)a = gba mod p = gab

mod p = rb mod p. The common secret is Q! 
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Security of Diffie-Hellman

• The values of a and b are secret.
– Alice sends r = ga mod p to B in the clear.
– Bob sends s = gb mod p to Alice in the clear. 

• These transmissions reveal a and b IF it is 
possible to deduce a from r = ga mod p or b 
from s = gb mod p. 

• This is the discrete logarithm problem. 
• No polynomial time algorithm is known for it.
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Review

• Symmetric Cryptography
• Public-Key Cryptography
• Cryptographic Hash Functions
• Digital Signatures
• Diffie-Hellman Key Exchange

Lect11 3/2/2020 © JE Savage 33


