CSCI 1800 Cybersecurity and International Relations

Secure Communication and Authentication

John E. Savage

Brown University

Outline

- Symmetric Cryptography
- Public-Key Cryptography
- Cryptographic Hash Functions
- Digital Signatures
- Diffie-Hellman Key Exchange

The Cryptographic Problem

- Goal: Alice needs to communicate securely with Bob, but Eve listens or interferes with conversation.
- Approach: Alice and Bob encrypt messages (they create ciphertexts) to keep them secure from Eve.
- Eve engages in cryptanalysis, tries to break cipher.
- Security by obscurity is dangerous. Once obscure method is discovered, all secrets are lost.
- Better to assume encryption method is known but that keys remain secret. Keys can be changed.

Three Types of Notation

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1101
13	1110
14	1111
15	

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	1000
8	1001
9	1010
A	1011
B	1100
C	1101
D	1110
E	1111
F	

Decimal	Binary	Octal
0	000000	00
1	000001	01
2	000010	02
3	000011	03
4	000100	04
5	000101	05
6	000110	06
7	000111	07
8	001000	10
9	001001	11
10	001010	12
11	001011	13
12	001100	14
13	001101	15
14	001110	16
15	001111	17
16	010000	20

American Standard Code for

 Information Interchange (ASCII)| Dec HxOct Char | | |
| :---: | :---: | :---: |
| | 000 NUL | (null) |
| | 1001 SOH | (start of heading) |
| | 2002 STX | (start of text) |
| | 3003 ETX | (end of text) |
| 4 | 4004 E0T | (end of transmission) |
| | 5005 ENQ | (encuiry) |
| | 6006 ACK | (acknowledge) |
| | 7007 BEL | (bell) |
| 8 | 8010 BS | (backspace) |
| 9 | 011 TAB | (horizontal tab) |
| | A 012 LF | (NL line feed, new line) |
| | B 013 VT | (vertical tab) |
| | C 014 FF | (NP forli feed, new page) |
| | D 015 CR | (carriage return) |
| | E 01650 | (shift out) |
| | F 017 SI | (shift in) |
| | 10020 DLE | (data link escape) |
| | 11021 DCl | (device control 1) |
| | 12022 DC2 | (device control 2) |
| | 13023 DC3 | (device control 3) |
| | 14024 DC4 | (device control 4) |
| | 15025 NAK | (negative acknowledge) |
| | 16026 SYN | (synchronous idle) |
| | 17027 ETB | (end of trans. block) |
| 24 | 18030 CAN | (cancel) |
| | 19031 EM | (end of medium) |
| | 1A 032 SUB | (substitute) |
| 27 | 1 B 033 ESC | (escape) |
| 28 | 1 C 034 FS | (file separator) |
| 29 | 1D 035 GS | (group separator) |
| 30 | 1E 036 RS | (record separator) |
| | 1 F 037 US | (unit separator) |

Dec Hx Oct Html Chr Dec Hx Oct Html Chr $_{\mathrm{H}}$ Dec Hx Oct Html Chr

Source: www.LookupTables.com

Message Fragment in Binary

- Map message: no mon no fun to ASCII
- n 156 o 157 (space) 040
- 001101111001101111000100000
- m 155 o 157 n 156 (space) 040
- 001101101001101111001101111000100000
- n 156 o 157 (space) 040
- 001101110001101111000010000
- f 146 u 165 n 156
- 001010110001110101001101111
- Concatenate bits to form integer message $\mathbf{M}=0011011$...

Symmetric Cryptography

- They agree on a common encryption method.
- Both Alice and Bob have the same secret key.
- Convert a text message to an integer M.
- Example: no mon no fun
- \156\157\040\155\157\156\040\156\157\040\146\165\156
- Slashes between octal triplets are for humans only - M = 001101110001101111000100111 ...
- Encrypt M as $C=E_{K}(M)$ using function E and key K.
- Decrypt C same way, $M=E_{K}(C)$. K is secret. Symmetric!

Eve Attempts to Get Secret Key

- Ciphertext-only attack (least info)
- Eve only has ciphertext.
- Known-plaintext attack
- Eve is given plaintext-ciphertext pair(s).
- Chosen-plaintext attack
- Eve chooses plaintext(s), gets ciphertext(s). She may choose plaintexts adaptively.
- Chosen-ciphertext attack (most info)
- Eve chooses ciphertext, gets plaintext.

Ciphers Introduced in Today's Lecture

- Substitution ciphers
- Polygraphic substitution ciphers
- One-time pads
- Binary one-time pads
- Advanced encryption standard (AES)
- Public-key cryptography (RSA)
- Digital signatures and hash functions

Substitution Ciphers

- Substitution ciphers permute letters in alphabet - E.g. Caesar replaced a letter by one three places away in the Latin alphabet.
- Caesar(3): a b c d ... x y z is replaced by defg... a b c
- General substitution cipher - map letters in an alphabet to a fixed permutation of the alphabet.

Frequency of Letters in English

Breaking Substitution Ciphers

- Substitution ciphers are easily broken
- Compute the frequency of each letter
- Find the most frequent letter, let's call it α.
- Almost certainly e maps to α with frequency ~12\%
- Find the second most frequent letter, β.
- Almost certainly t maps to β with freq. ~ 9\%
- Check words that result and fix mapping.

Vigenère Cipher

- Vigenère cipher (1586) is a polygraphic cipher on blocks of m letters. Given m letters $\left(I_{1}, l_{2}, \ldots, I\right), I_{\mathrm{j}}$ is shifted cyclically by k_{j} places for $0 \leq \mathrm{k}_{\mathrm{j}} \leq 25$.
- If $m=3, k_{1}=2, k_{2}=1, k_{3}=3,(a, g, z)$ mapped to (c, h, c).
- Let's encrypt attackatdawn
$-(a, t, t)(a, c, k)(a, t, d)(a, w, n) \Rightarrow(c, u, w)(c, d, n)(c, u, g)(c, x, p)$
- Encrypted message is cuwcdncugcxp
- If is reasonably small, easily broken by statistics.

Vigenère Cipher

- If m is reasonably small, the Vigenère cipher is easily broken by statistics.
- How would you do that?
- The integers can be derived from a text string
- thequickbrownfoxjumpsoverthelazydog
- Start alphabet at $0 ; \mathrm{a} \leftrightarrow 0, \mathrm{~b} \leftrightarrow 1, \ldots, \mathrm{t} \leftrightarrow 19, \ldots, \mathrm{z} \leftrightarrow 25$,
- 1974162082101171422135142392012151814 214171971103146
- Does this look like a random string?
- How many times are digits repeated?

One-Time Pad

- One-time pad (Miller 1882) uses m random integers $\left\{k_{j} \mid 1 \leq j \leq m\right\}, 0 \leq k_{j} \leq 25$, to shift letters in a string of length $\leq m$.
- The $\mathrm{j}^{\text {th }}$ letter is shifted by k_{j} positions.
- A real one-time pad might have edible pages of digits.
- Both sender and receiver need to know shifts
- Provides perfect security when $m \geq$ message length
- Fails when pad is reused or string is longer than m.
- One-time pad encryption broken during Cold War.

Binary One-Time Pad Again

- Message represented as n-bit binary string.
- E.g. $\mathrm{M}^{=}$
(a vector)
- Generate random n-bit string K (the key or one-time pad)
- E.g. $\underline{K}=100110$ (a vector)
- $\operatorname{XOR}(\oplus)$ is defined as $1 \oplus 0=0 \oplus 1=1$ and $0 \oplus 0=1 \oplus 1=0$
- XOR message M with key \underline{K} bit-by-bit to encrypt as X.

$$
\begin{gathered}
\underline{X}=E_{K}(\underline{M})=\underline{M} \oplus \underline{K} \\
\text { - E.g. } E_{\underline{K}}(\underline{M})=(\oplus 1)(\oplus 0)(\oplus 0)(\oplus 1)(\oplus 1)(\oplus 0)=110101
\end{gathered}
$$

- Decrypt by encrypting \underline{X} with \underline{K}

$$
\mathrm{E}_{\underline{K}}(\underline{X})=\underline{X} \oplus \underline{K}=(\underline{\mathrm{M}} \oplus \underline{K}) \oplus \underline{K}=\underline{M} \oplus(\underline{\mathrm{~K}} \oplus \underline{\mathrm{~K}})=\underline{\mathrm{M}} \oplus \underline{0}=\underline{\mathrm{M}}
$$

Reuse of One-Time Pad Dangerous

$$
\begin{aligned}
& \text { SEND } \\
& \text { CASA }
\end{aligned}
$$

C_{2}

XORing Two Encrypted Images

$$
\underline{C}_{1}=\underline{K} \oplus \underline{M}_{1} \quad \underline{C}_{2}=\underline{K} \oplus \underline{M}_{2} \quad \underline{C}_{1} \oplus \underline{C}_{2}=\underline{M}_{1} \oplus \mathbf{M}_{2}
$$

Pseudo-Random Number Generators

- It is expensive to produce true random nos.
- Pseudo-random number generators (PRNGs) generate numbers that "look" random.

- Encryption algorithms can be used as PRNGs.
- Encrypt a fixed string and represent it in binary
- E.g. E(attackatdawn) $=0100110101001110110$

Advanced Encryption Standard (AES) (Rough Sketch)

- AES (circa 2001) is a symmetric cipher whose inputs and outputs are 128-bit blocks. It uses an encryption key K of length 128,192 or 256 bits, denoted AES-128, AES-192, AES-256.

Advanced Encryption Standard (AES)

- When \underline{K} has 128 bits, AES computes $\underline{X}_{0}=\underline{M} \oplus \underline{K}$ and then executes 10 rounds.
- Each round does a substitution, permutation, mixing of results, and an XOR'ing step.
- It is too complicated to explain here.
- AES is highly secure but can be attacked using the time spent computing - this is a
- In 2010 AES-256 was considered highly secure.
- AES-192 and AES-256 approved for US Top Secret!

Public-Key Cryptography

- Each party has public \& private keys
- Alice: Priv Alice Pub $_{\text {Alice }}$; Bob: Priv $_{\text {Bob }}$, Pub $_{\text {Bob }}$.
- Alice encrypts message M for Bob with

$$
X=E_{K}(M) \text { where } K=P_{\text {ub }} \text { Bob. }
$$

- Bob decrypts Alice's encrypted message with

$$
M=E_{K^{*}}(X) \text { where } K^{*}=\operatorname{Priv}_{\text {Bob }} .
$$

- Decrypt using same algorithm E with private key

Origin of Public-Key Cryptography

- James Ellis, Clifford Cocks, Malcolm Williamson, invented it at GCHQ (British intelligence agency) by 1973, made public in 1997
- Diffie and Hellman propose idea publicly in '76.
- Rivest, Shamir and Adleman (RSA) gave first practical implementation in 1977.
* http://en.wikipedia.org/wiki/Public-key_cryptography

Symmetric vs Public Key Crypto

- Symmetric key system has one key per user pair - Thus, there are $n(n-1) / 2$ (pairs) keys for n users - If $n=10^{4}$, that's about 50×10^{6} keys!
- In public-key system, $2 n$ keys suffice.
- Each party publishes one key, keeps other secret
- Symmetric key system faster than public key.
- PK systems often used to create/exchange secret symmetric keys

RSA Public-Key System

- Modular arithmetic
- add and multiply integers modulo n
- result is the remainder after dividing by n.
- E.g. $(3+4) \bmod 5=2,(4 * 3) \bmod 3=0$
- Bob's public key Pub $_{B}$ is the integer pair (e,n).
- Bob's secret key is $\operatorname{Priv}_{\mathrm{B}}=. \mathrm{n}=\mathrm{pq}$, two primes
- Require that e, d, and n satisfy
$X^{e} \bmod n=X$ for any integer X in $\{0,1,2, \ldots n-1\}$,

RSA Public-Key System

- Alice encrypts M for Bob as $C=M^{e} \bmod n$
- Recall Pub ${ }_{B}=(e, n)$
- Bob decrypts C by computing $C \bmod n=M$. This follows because
$C \bmod n=\left(M^{e}\right) \bmod n=M^{e} \bmod n=M$
- Bob can also encrypt M as $C=M \bmod n$ and decrypt with C^{e} mod n because

$$
C^{e} \bmod n=(M)^{e} \bmod n=M^{e} \bmod n=M!
$$

Security of RSA

- Security dependent on difficulty of finding d given e and n .
- Security closely tied to factoring n . So far integer factorization is considered very hard to do.
- A mathematical proof of security of RSA is a very important open problem.

Cryptographic Hash Functions

- A cryptographic hash function compresses a message M into fixed-length sequence $\mathrm{H}(\mathrm{M})$. Mapping is one-way and collision-resistant.
- A function is one-way if it is computationally difficult to find M given $H(M)$.
- It is weakly collision-resistant if it is difficult to find a message M^{\prime} with $H\left(M^{\prime}\right)=H(M)$ given just $H(M)$.
- It is strongly collision-resistant if is difficult to find both M and M^{\prime} with $H\left(M^{\prime}\right)=H(M)$.

Digital Signatures

- A digital signature of a message is a way for an entity to prove that the sender sent message M.
- Alice computes $H(M)$, hash of M, and forms $S_{\text {Alice }}(M)$ by encrypting $H(M)$ with her private key.
- She sends Bob (M, $\mathrm{S}_{\text {Alice }}(\mathrm{M})$).
- Bob confirms that M has not changed in transit and that Alice sent it but computing $\mathrm{H}(\mathrm{M})$ and comparing it to the decryption of $\mathrm{S}_{\text {Alice }}(\mathrm{M})$) with her public key.

Diffie-Helman Key Exchange

- Symmetric encryption is much faster than public-key encryption.
- Diffie and Helman invented a technique that two parties can use to agree on a secret key
- Both parties can use this key for symmetric encryption.

Diffie-Helman Key Exchange

- $\mathbf{B} \& \mathrm{~A}$ choose prime $p \&$ primitive root $g \bmod p$.
$-g$ is primitive if for each r integer in $\{0,1,2, \ldots, p-1\}, r$ satisfies $r=g^{k} \bmod p$ for some integer k.
- Alice's secret is a and is.
- A sends $r=g^{a} \bmod p$ to B .
- B sends $=g \bmod p$.
- A computes ${ }^{a} \bmod p$.
- B computes $r \bmod p$.
- Let $\mathrm{Q}={ }^{a} \bmod p=(g \bmod p)^{a}=g^{a} \bmod p=g^{a}$ $\bmod p=r \bmod p$. The common secret is Q !

Security of Diffie-Hellman

- The values of a and are secret.
- Alice sends $r=g^{a} \bmod p$ to B in the clear.
- Bob sends $=g \bmod p$ to Alice in the clear.
- These transmissions reveal a and IF it is possible to deduce a from $r=g^{a} \bmod p$ or from $=g \bmod p$.
- This is the discrete logarithm problem.
- No polynomial time algorithm is known for it.

Review

- Symmetric Cryptography
- Public-Key Cryptography
- Cryptographic Hash Functions
- Digital Signatures
- Diffie-Hellman Key Exchange

