CSCI 1800 Cybersecurity and International Relations

Bitcoins and Blockchains John E. Savage

Overview

- We describe the bitcoin system, which supports monetary exchange without a central authority
- It uses a blockchain to record the exchange of Bitcoin, a cryptocurrency introduced on 1/3/2009
- While cryptocurrencies are important, blockchains may become more important
- We identify issues with blockchains that introduce important new governance questions
- Discuss governance models

What is a Cryptocurrency?

- A digital currency is a currency available only in digital form
- Currency transactions are recorded in an append-only public ledger called a blockchain, a chain of blocks
- Agents, called miners, are responsible for adding blocks to a blockchain
- Any person or group can be a miner.
- They follow rules described below.

A Generic Blockchain

- Blocks have Header & Transaction Payload (PLD)
- Header has sequence no. n, time stamp TS, hash H₁ of <u>header of preceding block</u>, hash H₂ of PLD, and nonce NC, solution to hard computational problem.
- If nth block PLD changes, H₂ in (n+1)st block changes, requiring H₂ in all later blocks be changed.

The Role of Miners

- Collect requests for new currency transfers

 Note: Transfers have space for text.
- Ensure owners intended to make the transfers
- Solve a hard computational problem to acquire permission to add a block of bitcoin transfers to chain and receive bitcoins for their effort.

Note: miners must pay for power to solve problem

• Each block also has header that links it firmly (i.e., cryptographically) to the previous block

Bitcoin Enlivened Cryptocurrencies

- Bitcoin is a public digital currency
 - Goal was to replace intermediaries, e.g. banks
 - With cryptography and code
 - It uses a secure database, the blockchain
- Blockchain provides bank-type guarantees but
 - All currency transactions are public Is this a problem?
 - "Miners" validate transactions
 - A blockchain is an immutable public chain of blocks
 - Forking is possible, in which case it becomes a tree

Bitcoin Social Network

• Bitcoin miner network is overlaid on Internet

- This is a peer-to-peer network
- Normally each miner sees the same blockchain

General Blockchain Protocols

- A blockchain is a chain of blocks, with possible forking
- Blocks record transactions, e.g bitcoins, votes, real-estate
- A digital address is associated with a user transaction
 Private keys in PKI authenticate users and their transactions
- A miner implements a protocol to add blocks:
 - 1. Computes proof-of-work by solving hard problem, getting NC
 - 2. Assembles new transactions and verifies them
 - 3. Creates a header and transaction payload, forming block
 - 4. Each new block is cryptographically linked to preceding block
 - 5. Transactions are immutable. Changes are detectable by all

Claims for Blockchains

- It is a revolutionary technology
- Could have an impact as large as the Internet
- Services can be completely decentralized
 No need to trust a single organization
- Agreements can be encoded as smart contracts attached to blocks and executed automatically
- Blockchains are proposed for many tasks
 - E.g. matching buyers and sellers

Cryptocurrencies

- More than 3,000 cryptocurrencies. Examples:
 Bitcoin, Litecoin, Ethereum, BitcoinCash, Ripple
- Claims for cryptocurrencies
 - Provide permanent public and verifiable records
 - Create decentralized trust anchors
 - Eliminate banking fees
 - Shorten time to settle banking transactions
 - Reduce obstacles to international funds transfer
 - Can exchange them for fiat currencies

The **Bitcoin** Protocol

- Miners agree to apply the Bitcoin protocol
- A miner computes for about 10 minutes to obtain a proof-of-work, a nonce or string, by solving a hard computational problem.
- A miner forms a block of transactions not previously recorded and adds it to blockchain
- The structure of blocks is described earlier
- System based on a public-key encryption system

Recall: Public-Key Cryptosystem

- Each participant in a public-key encryption system has a secret key, SK, and a public key, PK.
- Alice sends secret message M to Bob as follows
 - She encrypts M with Bob's public key, $s = E(M, PK_{Bob})$
 - Sends it to Bob
 - Bob decrypts it with his private key, $M = D(s, SK_{Bob})$
- Bob can "sign" message M by decrypting it with SK_{Bob}. Alice can recover M from signature by encrypting with PK_{Bob}.

Hash Functions & Bitcoin Addresses

• Recall: A hash function H

- Compresses strings, H(Text) = "short string"
- if $\text{Text}_1 \neq \text{Text}_2$ very likely that $H(\text{Text}_1) \neq H(\text{Text}_2)$

• Thus, H(Text) is used as an "address"

- If H(Text₁) = H(Text₂), Text₁ and Text₂ "collide".
- Collisions are computationally hard to find
- Bitcoins owned by addresses, i.e. hashes.
- Address A = H(PK) associated with a public key PK
 E.g. A = 1BtjAzWGLyAavUkbw3QsyzzNDKdtPXk95D

Bitcoin Transactions

- A transaction = transfer of Bitcoins from one address to one or more other addresses.
- Customers pay miners to process transactions
 - Some miners charge high fees
 - Or will not take small transactions
- Bitcoins make it easier to process dirty money
- Bitcoin owners are easily identified
- However, tumblers or mixing services exist

 They break the link between addresses and owners
 Often used for Bitcoin "laundering"

Cryptographic Signatures

- Signatures are used to authenticate senders
- Let Q have public and private keys, PK_Q, and SK_Q.
 - Sign message M: Q sends (M, σ), where σ = D(M, SK_Q)
 - Receiver encrypts σ using PK_Q giving M' = E(σ , PK_Q).
 - -M' = M only if Q created the signature σ .

Proving Ownership of Address

- Alice asks Bob: Prove you own addr B = H(PK_{Bob})
 - They agree on a message M.
 - Bob gives PK_{Bob} to Alice as well as the signature σ of M, namely, $\sigma = D(M, SK_{Bob})$.
 - She computes $H(PK_{Bob})$ and finds is equal to B.
 - Then, if M = $E(\sigma, PK_Q)$, Alice knows that Bob owns B because only Bob could have produced σ .

Simple Bitcoin Transaction

- Alice wants to pay β Bitcoin to Bob Her address is A and his is B
- Alice's transaction: T_A = {MSG_A, σ_A}
 MSG_A = [A, B, PK_A, β] means
 Send β Bitcoin from A to B; use PK_A to verify A is sender
 σ_A = D(MSG_A,SK_A), the decryption of MSG_A, is its signature
 Verify that A intended to make transfer by encrypting σ_A
- All transactions are broadcast to all participants
- Each participants can verify each transaction

Goals of Bitcoin System

- Disallow double spending build confidence
- Establish consensus on valid transactions
- Transparency display all transactions
 Allow participants to keep copies of transactions
- Trust is decentralized not centralized

Complex Transactions

- Simple transactions $T_A = \{MSG_A, \sigma_A\}$ where $MSG_A = [A, B, PK_A, \beta], \quad \sigma_A = E(MSG_A, SK_A)$
- Complex transactions
 - Bitcoins sent from multiple sources to recipients
 - Source and recipient amounts are specified
 - Excess of source over recipient amounts is miner fee
- Transaction size
 - Blocks limited to 1 MB,

Block Details

- A block contains a header HD and a payload PLD
- Header HD = [SQ, TS, K, L, NC] contains
 - SQ: Sequence number
 - TS: Timestamp
 - Two cryptographic hashes, K and L
 - K: Hash H₁ of the header of the previous block
 - L: Hash H₂ of transactions in the current block
 - NC: nonce a solution to a cryptographic puzzle
- *n*th header $HD_n = [n, TS_n, H_1(HD_{n-1}), H_2(PLD_n), NC_n]$

Recap – The Bitcoin Network

- Social network maintains blockchain consensus
 - Transactions are created, posted and verified
 - Unverified transactions are discarded
 - Miners solve hard problems and add blocks
 - Blocks are verified by miners
 - Miners retain secure copies of blockchain
- Membership in network is open to all
- Mining is costly. Miners are incentivized.

Solving Puzzle

- *n*th Header $HD_n = [n, TS_n, H_1(HD_{n-1}), H_2(PLD_n), NC_n]$
- h is the SHA-256 cryptographic hash function
- The nonce NC_n must satisfy $h(TS_n \cdot H_1(HD_{n-1}) \cdot H_2(PLD_n) \cdot NC_n) \le v$
- Here v is target value adjusted every two weeks so that it takes about 10 minutes to find NC_n.
- h discovered by exhaustive search
 - Very energy intensive

Incentivizing Miners

- Miners awarded new Bitcoins to add a new block
 Also paid miners fees 3/9/20 about \$.50/Kilobyte
- Miner award started @ 50 BTC, halves every 2.1×10⁵ blocks or about 4years. Today 12.5 BTC.
- 3/9/20 1 BTC = \$7,759. Award/block ~\$96,987.5
- Annual global mining revenue* ~ \$5 Billion
- > 300,000 miners, Profit* < \$16,000/miner/yr

^{*} https://www.theblockcrypto.com/linked/53425/bitcoin-miners-made-an-estimated-5-billion-in-revenue-during-2019/

Energy Dissipation

- Estimated 77 Terawatt Hours/year
- Equivalent to the electricity used by every American home over 22 days!

* https://digiconomist.net/bitcoin-energy-consumption

Forking Blockchain Extensions

Blockchain Forking

- If multiple miners extend the blockchain at the same time, forking begins
- The bitcoin protocol requires miners to extend the longest branch

- Likelihood of multiple long branches is very low
- Thus, one branch wins, voiding others
- Miner awards must be confirmed 100 times! 3/9/20 © John E. Savage

Orphan Blocks in Blockchain Forking

See Bitcoin's Underlying Incentives by Y. Sompolinsky, A. Zohar CACM, Vol. 61 No. 3, 2018

© John E. Savage

Issues with Cryptocurrencies

Attack Against Miners

- The 51% attack
 - If entity acquires 51% of computational power it can
 - Select which transactions to include or exclude
 - Create an orphan block by branching before it
- \$4.26 Billion in Bitcoin stolen from exchanges, investors and users in 2019*

* https://www.businessinsider.com/the-biggest-cryptocurrency-scams-and-arrests-of-2019-so-far-2019-8

Loss from Bitcoin Wallets

- Bitcoins are associated with an address A, such as 1BtjAzWGLyAavUkbw3QsyzzNDKdtPXk95D and a secret key SK
- Address & key are typically stored in a wallet
- In 2014 Mt. Gox, the world's largest bitcoin exchange had \$450 million of customer funds stolen out of its "hot wallet" causing it to entry bankruptcy
- Owner must retain his/her key to the wallet
 - '17 Fortune* estimates \$20 Billion in Bitcoin permanently lost
 - '19 Investopedia estimates 20% Bitcoins lost, unrecoverable

* http://fortune.com/2017/11/25/lost-bitcoins/

Money Laundering

- Ransomware asks for ransom in Bitcoin
- Bitcoin has been involved in money laundering
- But identities of bitcoin owners can be traced
- Technique to avoid revealing identities
 - Comingle funds from many sources in a mixing service (or tumbler) that distributes them slowly

Blockchain Peer-to-Peer Network

Bitcoin Peer-to-Peer Network

- A random topology emerges from simple rules
- A new node (miner) contacts a seed node
- It establishes connections to nodes in the network
 Non-responding nodes forgotten after 3 hours
- Transactions and blocks propagate slowly
 - Propagation time can be 10s of seconds!
- Temporary conflicts occur

 E.g. Double-spending or blockchain forking
- Although resolved eventually, can be abused

Eclipse Attack⁺ Isolates Miners

- Each node in a bitcoin peer-to-peer network
 - Maintains long-lived connections to eight* peers
 - Accepts ≤ 117* incoming connections from IP addresses
- Eclipse attack monopolizes these connections

 It has been launched with only 400 bots
 It uses very low-rate TCP connections

+ https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
* These are configurable parameters.

Effect on Eclipsed Miners

- Forces miners to waste effort on orphan blocks
- Makes a 51% attack much easier
- A selfish miner who eclipses others can command higher fees to process transactions
- Make double-spending of currency possible by blinding some miners

Immutability is a Problem

- Child pornography links are in bitcoin blockchain
 This may present a legal problem for some miners
- Changes to a block may be needed, e.g.
 Right-to-be-forgotten, sensitive information leaks
- Decentralized Autonomous Organization (DAO)

 Was to run autonomously on smart contracts
 \$50 million hack of it required a hard fork to fix
- The Accenture-Ateniese redaction capability is proposed to edit, remove, insert or merge blocks

Accenture-Atienese Redactions

 If PLD_i in block B_i = [HD_i, PLD_i] is replaced by PLD_i, H₂(PLD_i) will be different and the chain is broken!

Accenture-Atienese Redactions

- If in block B_i = [HD_i, PLD_i] PLD_i is replaced by PLD_i H₂(PLD_i) will be different and chain is broken!
- But if H₂(PLD_i) = H₂(PLD_i), the header HD_{i+1} of block B_{i+1} doesn't change. PLD_i is called a collision
- For a traditional hash function H, finding a collision PLD, for PLD, is very difficult

Chameleon Hash Functions

- A chameleon hash function has a "trapdoor," i.e. secret key that reduces effort to find collision
- If such hash functions are used in blockchains, redactions are possible
- To avoid reliance on one secret key, a t-out-of-n secret sharing scheme can be used

Applications of Redaction

- Private blockchain
 - Write permissions issued by central authority
 - Read permissions public or restricted
- Consortium blockchain
 - Consensus decisions shared by consortium partners
- Public blockchain
 - Key shares could be allocated to big miners or states
 - In international arena, introduces new challenges!

Smart Contracts

 Vitalik Buterin added smart contracts to Ether, his new cryptocurrency:

- He said Bitcoin programs were too primitive!

- But: \$50 M hack* of DAO, Ether spinoff, in 2016
 - Hacker avoided checks while transferring funds
 - Stolen funds "retrieved" by a hard fork of DAO
- Problems:
 - Secure distributed code is much harder to write than secure serial code

* https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/ 3/9/20 © John E. Savage

Blockchain Challenges

- Theft of keys and currency
- Money laundering
- Eclipse attack on the blockchain network
- 51% attack
- BGP Hijacking
- Immutability problems
- Insecure and exploitable smart contracts

Blockchain Governance

- What issues arise in international settlements?
- Will they be dependent on technology?
 E.g. permissioned vs permissionless blockchains
- If blockchains are editable, who will hold keys?
- What venues will be used to settle disputes?
- Who evaluates smart contracts for security and correctness?

Methods of Governance

- Bilateral, Multilateral, United Nations
- Multi-stakeholder governance
 - Very popular in some circles
 - Presumably gives voice to all stakeholders
 - Helps to energize stakeholders
 - But can result in anarchy if no rules of order
 - Voting rights must come with responsibilities
 - Important to provide avenues for minority opinions

Our Tools Shape Us

- "We shape our tools, and thereafter they shape us" – John Culkin in a Saturday Review story in 1967 describing the work of Marshall McLuhan*
- We are not good at anticipating consequences
- New technologies bring new problems
- Blockchain technologies are no different
- It is prudent to prepare ourselves

* https://mcluhangalaxy.wordpress.com/2017/09/19/a-schoolmans-guide-to-marshall-mcluhan-by-john-culkin-s-j-1967/