CSCI 1800 Cybersecurity and International Relations

> Engineering for Security John E. Savage Brown University

Outline

- Security modeling including access control
- Federal security regulations and standards
- Software vulnerability assessments
- Microsoft's Security Development Lifecycle
- Introduction to Threat Analysis
- Security can be violated even if code is perfect

Policy, Models and Trust

- To have secure systems, engineers need

 Clear security goals
 Effective implementation strategy
- A security policy puts constraints on actions that can taken by actors on objects in the system in order to achieve security goals.

Components of a Security Policy

Actors

- Individual or group agents interacting with a system.

Objects

Informational/computational resources affected by policy.

Actions

- Possible modifications to objects, e.g. read, edit, copy, remove

Permissions

- Rules constraining actions that actors may take on objects.

• Protections

- Policy features, e.g confidentiality, integrity, availability (CIA)

What is a Security Model?

- A security model is an abstraction providing conceptual language to specify security policies.
 - E.g. Unclassified (U), Confidential (C), Secret (S), Top Secret (TS)
 - Compartments for sensitive compartmentalized information (SCI), such as human intelligence (HUMINT), satellite observations (GEOINT), signals intelligence (SIGINT)

– Why are these compartments sensitive?

Two Models of Access Control

- Discretionary access control
 - Owner may specify permissions on files
 - A more relaxed form of control
- Mandatory access control
 - Administrator fixes permissions in advance.
 - More strict control
- Rules have subjects (parties requesting access) and objects (those things being accessed).

Bell-LaPadula (BLP) Access Control Model

- Next slide describes this slide graphically
- Applies to confidentiality dates from the 1970s
- Object x and user u have security levels L(x) & L(u)
 Some security levels: Unclass, Class, Secret, TopSecret
- For users u and v, v has higher clearance than u if L(u) ≤ L(v). u can pass info to v but not vice versa.
- No "read up" (user can't see more secure data)
 User u can read x only if L(x) ≤ L(u)
- No "write down" (user can't use more secure data)
 User u can write to object x only if L(u) ≤ L(x).

BLP Access Control Model

BLP model weakness: only handles confidentiality

Ken Biba ('77) Access Control Model

- Goal of Biba's model is to maintain data integrity:
 - i.e. data accuracy & consistency of data over its life-cycle.
- Let I(x) and I(u) be the integrity of user u & object x

 The larger is I(u) or I(x) the more trustworthy is the user
 u or accurate the object x.
- Don't read from lower integrity level
 - User u can read object x only if $I(u) \le I(x)$.
- Don't write to higher integrity level.
 User u can write to object x only if I(x) ≤ I(u).

What is Role-Based Access Control?

- Components: users, roles, permissions, sessions
 A role is a collection of users.
 - A session is an interaction for a period of time.
- Role hierarchy is defined, as in a corporation.
 - President IsA manager IsA employee
 - Higher role user inherits permissions of lower one
 - When is this not a good idea?

Should the CEO be allowed to fix to an IT problem?

Role constraints may be imposed
 – Example: avoid conflicts of interest.

Early USG Security Standards

- Trusted Computer System Evaluation Criteria, aka Orange Book – issued by DoD in 1983, 1985
 - Division A: system has a formal process for verification of security
 - Division B: mandatory access control
 - Division C: discretionary access control
 - Division D: minimal protection criteria

Newer USG Security Standards

- Common Criteria for Information Technology Security Evaluation – an ISO standard
 - It subsumes the Orange Book
 - Defines key concepts related to security evaluations
 - Framework for documenting security goals
 - Not a certification vouching for product security.

USG Regulations

• HIPAA (1996)

- Sets privacy standards on patient records for healthcare providers and employers.
- Family Educational Rights and Privacy Act (FERPA) ('74)
 Requires protection of privacy of educational records in US
- Federal Information Security Management Act (FISMA)
 - Revised in 2014 regulates government information security.
 - It requires federal agencies to implement processes and controls designed to ensure the confidentiality, integrity, and availability of system-related information.
 - Must follow FISMA and NIST standards, and legislative requirements, such as the Privacy Act of 1974.

Software Vulnerability Assessment

- The problem: software can be enormous

 Mac OS X 10.4 has > 86 million lines of code!
 Code can have both performance & security bugs
- "A vulnerability is a security exposure that results from a product weakness ... the product developer did not intend to introduce and should fix once it is discovered." – Microsoft definition

How Many Errors are Tolerable?

How many errors per 1,000 lines of code (KLOC)?
 – Estimates vary from 15-50 defects per KLOC
 – MSFT gets bug density of ½ bug/KLOC in production*

* https://labs.sogeti.com/how-many-defects-are-too-many/

Types of Vulnerability Assessment

- Black-box analysis
 - Penetration test (pentest) done without knowledge of innards.
 - Pentests look for security vulnerabilities
- White-box analysis
 - Same but with full knowledge of hardware/software, network environment, etc.

Code Analysis for Privacy/Security

- Goal: Find and remove privacy/security hazards.
- Good analysis requires training and investment
 - Software engineers generally need education on this.
 - Microsoft's Security Development Lifecycle (SDL) represents a big step forward.
- Benefits: Improved security, privacy and reliability.

Two Approaches to Code Analysis

Static code analysis studies source code, that is, the text of programs.
 This is an example of white-box testing.

Dynamic analysis examines running programs.

Components of Static Code Analysis*

Data Flow Analysis

 Does analysis of basic blocks (next), sections of code in which control stays within a block during execution

• Control flow graph (CFG)

Shows all possible control paths, i.e. paths through code

• Taint analysis

A variables touched by a user is "tainted."

– How do tainted variables affect the CFG and actions?

^{*} https://www.owasp.org/index.php/Static_Code_Analysis

Example of a Basic Block

\$a = 0; \$b = 1;

if (\$a == \$b)
{ # start of block Note: # starts a comment
 echo "a and b are the same";
} # end of block
else
{ # start of block
 echo "a and b are different";
} # end of block

Modeling System Threats

- Data flow analysis is preferable to focusing on assets or studying motivations of attackers.
- Group components by trust boundaries, 3 below

Control Flow Graph

Dynamic Code Analysis

- Good analysis explores all important paths
 Good choice of test data will exercise more paths
 - Incomplete testing can result in catastrophic failure
- Fuzzing can reveal hidden errors. What is it?
 - Run code on virtual machine no damage from crash
 - Try inputs of length 1, 2, 3, ... until crash, maybe
 - Note: malware may detect it is being run in a virtual machine and not exhibit its malicious behavior

2018 Verizon Data Breach Report*

Who's behind the breaches?

Source: 444 x 10⁶ malware detections Organizations: 130,000 22 = Median number malwares/org/year

Frequency of malware vectors

Figure 21. Frequency of malware vectors within detected malware (n=58,987,788)

* Verizon Data Breach Digest, 2018, http:// verizonenterprise.com/DBIR2018

Information Security Attributes The CIA Triad

- Confidentiality: Access to information is limited to those with proper authorization.
- Integrity: Maintaining the consistency, accuracy and trustworthiness of data during its life cycle.
- Availability: Reliable access is maintained to resources by authorized parties.

Microsoft's Security Development Lifecycle (SDL)

- Bill Gates inaugurated Microsoft's Trustworthy Computing Initiative in 2002.
 - Success with major new corporate initiatives often requires support from top management.
- Every product that impacts privacy or may be used by children needs security analysis.
 <u>— This means almost all hardware/software products</u>
- Microsoft code is now among the most secure!

Less Costly to Fix Defects Early*

* https://www.researchgate.net/figure/255965523_fig1_Figure-3-IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects

Microsoft's SDL

Training	Requirements	Design	Implementation	Release	Verification	Response
Core Security Training	Establish Security Requirements Create Quality Gates / Bug Bars Security & Privacy Risk Assessment	Establish Design Requirements Analyze Attack Surface Threat Modeling	Use Approved Tools Deprecate Unsafe Functions Static Analysis	Incident Response Plan Final Security Review Release Archive	Dynamic Analysis Fuzz Testing Attack Surface Review	Execute Incident Response Plan

- Personnel must be trained.
- Security requirements, risk assessment needed
- Threat modeling (STRIDE) will reduce attack surface.
 - Spoofing, Tampering, Repudiation, Information Disclosure, Denial of service, Elevation of privilege.
- Implementation requires good tools to protect against attacks
- Plan to handle errors found after release of code.
- Verification needed via dynamic analysis including fuzzing.

STRIDE Threats*

- S Spoofing
- T Tampering
- R Repudiation
- | Information Disclosure
- D Denial of Access or Service
- E Elevation of Privilege

* Microsoft's mnemonic for types of software threats

STRIDE Explained

- S pretending to be another person or thing
- T modifying something one should not
- R falsely claiming not to have taken an action
- I exposing information to those unauthorized
- D denying users access to a service
- E acquiring access at an elevated level

STRIDE Elaborated

Threats	Objectives		
S poofing	Authenticity		
Tampering	Integrity		
Repudiation	Non-Repudiation		
Information Disclosure	Confidentiality		
Denial of Service	Availability		
Elevation of Privilege	Proper Authorization		

Four Ways to Address Threats (META)

- Mitigate it
 - Increase the work to exploit it
- Eliminate it
 - Usually requires elimination of features
- Transfer it
 - Let some other system element cope with it
- Accept it

Risk acceptance may be less costly than other steps

Source Material

- *Threat Modeling: Designing for Security* by Adam Shostack, John Wiley & Sons, 2014.
- Writing Secure Code: Second Edition, Howard and LeBlanc, Microsoft Press, 2009

Is Open Source Software a Panacea?

- Software is available for modification under liberal copyright policy.
- Do many eyeballs on the code make it secure?
 "... in reality that doesn't happen" Cowan 2002.
- Russia believes it avoids US software.
 - Putin orders Russian government to move to Open Source Software by 2015. (12/28/2010)
- Problems: No incentive to find bugs. Coders not trained to find them. It is hard!
 - See Software Security for Open-Source Systems*, 2003

* See http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7425509061C29FEDE840C8C4F9F69089?doi=10.1.1.12.8679&rep=rep1&type=pdf

Bug-Free Software Can Be Exploited!*

- Talk: Software Exploitation: Hardware is the New Black by Cristiano Giuggrida, MIT, 11/5/08
 - "Verified bug-free software can be exploited by a relatively low-effort attacker."
 - "[S]tate-of-the-art security defenses, which have proven useful to raise the bar against traditional software exploitation techniques, are completely ineffective against such attacks."
- Surprisingly, some operating systems vulnerable
- * https://www.csail.mit.edu/event/software-exploitation-hardware-new-black

Exploitation of Bug-Free Software

- "Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector" by Cristiano Giuffrida †
 - Uses Rowhammer to changes bits in memory
 - See next slide
 - Exploits de-duplication to obtain side information
 - Allows user to obtain gain arbitrary read/write access to memory

+ https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7546546

Row-Hammer Attack

- De-duplication
 - Space saved by holding only one copy of a file
 - If one copy changed, a new copy created, which takes time
 - This provides one bit of side information!
 - Which is enough to violate security (too hard to explain)

Review

- Security modeling including access control
- Federal security regulations and standards
- Software vulnerability assessments
- Microsoft's Security Development Lifecycle
- Introduction to Threat Analysis
- Security can be violated even if code is perfect