
CH1: BLAST and Karlin-Altschul Statistics

CS 182 Spring 2022

Scribes (from past years): eyouth, daluthge, berdogdu, kclark5, ewoo

Scribes (2022): ale22, cjordan3, jzhan204

Compiled & edited by eyouth, smaffa

Reach out to cs1820tas@lists.brown.edu for any clarifications or corrections.

Overview of BLAST
BLAST (Basic Local Alignment Search Tool) is one of the most widely-used bioinformatics algorithms. It
compares a query sequence with target sequences stored in a database or library to identify homologous
regions, which has earned it a reputation as the “Google of biological research”.

Input: A query sequence Q and a database of sequences DB

Output: All regions of DB which have significant ungapped local alignment scores with Q

We seek the alignments with maximal score, as they indicate regions of the database which exhibit high
similarity with the query sequence. BLAST can therefore be used to identify homologous regions across the
genomes or proteomes of different species!

Scoring Matrices and Random Walks
Scoring matrices are of central importance to alignment algorithms such as BLAST. Commonly-employed ex-
amples include PAM (Point Accepted Mutation) matrices (developed by Margaret Dayhoff in the 1970s) and
BLOSUM (BLOcks SUbstitution M atrix) matrices (developed by Henikoff & Henikoff in the 1990s).

The “rolling” alignment score between the query sequence and the database can be visualized as a random
walk in which matches increase the score and mismatches decrease it. A simple example using a uniform
+1/−1 scoring scheme for two DNA sequences is shown below:

ggagactgtagacagctaatgctata
| | | ||| || |||
gaacgccctagccacgagccattatc

Test statistics for evaluation of alignment significance can be obtained at points along the random walk.
Several additional features of random walks are of interest.

Defn: A ladder point is a point on the random walk which is lower than any previously-reached point.

Defn: An excursion is a point on the random walk which is the highest point between two ladder points.

1

mailto:cs1820tas@lists.brown.edu

Random walks for protein sequences are often more complex due to greater variability in scores between pairs
of amino acids. Significance can be evaluated through hypothesis testing (e.g., evaluating the likelihood of
an alignment score being generated by random chance). The probability of observing a given amino acid ai
is pi, with i ranging from 1 to 20. These probabilities form a distribution; i.e.,

20∑
i=1

pi = 1

Under the null hypothesis (alignment due to random chance), the probability of observing a given pair of
amino acids (ai, aj) is simply pipj . Under the alternative hypothesis (alignment due to non-random factors
such as convergent evolution), this probability is instead qij . Karlin-Altschul statistics provide a means of
deriving significance scores from comparisons of these probabilities.

The objective of BLAST is to identify high-scoring segment pairs (HSPs). The significance of each HSP can
be evaluated as the log-likelihood of the probabilities of observing the alignment under the alternative and
null hypotheses. Highly significant HSPs are returned as the “best” alignments between the query sequence
and the database.

The BLAST Algorithm
BLAST represents a more efficient alternative to the Smith-Waterman algorithm for local sequence alignment
(introduced previously in CS 181). For aligning two sequences of length n, an n-by-n dynamic programming
table is constructed. The time complexity for the algorithm is quadratic; i.e., O(n2).

The Smith-Waterman algorithm is “global” in the sense that it searches over all possible local alignments and
finds the optimum alignment in the space of local alignments. In contrast, the BLAST algorithm looks for
local optima. The time complexity for BLAST is linear in the total size of the database; i.e., O(n).

The BLAST algorithm has three phases: seeding, extension, and evaluation. The seeding and extension
phases are built on algorithmic (deterministic) methods, while the evaluation phase relies on statistical
(probabilistic) methods.

Note that there are multiple BLAST programs. Each BLAST program takes as input a query sequence Q,
a database of sequences DB, and a similarity matrix M (e.g. PAM250, BLOSUM62). Some examples of
BLAST programs are as follows:

Program Query (Q) Database (DB)

BLASTN DNA DNA
BLASTP protein protein
BLASTX DNA protein

TBLASTN protein DNA
TBLASTX protein protein

To reiterate: Smith-Waterman only finds the global optimum, while BLAST can find multiple local optima.
Yet BLAST is more efficient!

Defn: Sensitivity is the proportion of “true positives” (i.e., HSPs) that are correctly identified.

Phase 1: Seeding
Seeding is based on “words”, or k-mers. For example, DNA codons are 3-mers (words of length 3).

Defn: The neighborhood of a k-mer w is the set of all words of the same length whose ungapped alignment
score with w exceeds some threshold T .

Defn: A hit is a word which is in the neighborhood of a word of interest.

2

Note that the set of “hits” depends on the choice of scoring matrix. For example, consider a 3-mer w drawn
from the alphabet of amino acids. The score threshold may be set at T = 14. To find all relevant “hits”, the
ungapped alignment scores between w and all other 3-mers in the protein alphabet are computed using a
given scoring matrix. Using PAM, such a list may look like this:

{RGD (18),KGD (17), RGN (16),KGE (15)}

Any 3-mers for which the score is less than or equal to 14 are excluded from the set. If instead we use
BLOSUM, however, the list may instead look like this:

{KGD (14), QGD (13), RGE (13)}

In this example, all three 3-mers above would be excluded from the final set of “hits”, as none of their
alignment scores with w exceed the threshold T .

In BLASTN, the parameter k is set to k = 7, and the parameter T is not used (i.e. the neighborhood for a
word is the set of all words of the same size).

In BLASTP, the parameter k is set to k = 3, and the parameter T is set to T = 999.

The selection of T is dependent on the values in the scoring matrix and the desired balance between sensitivity
(proportion of true alignments identified) and speed.

Phase 2: Extension
Extension involves extending all “hits” identified in the seeding phase to find longer high-scoring alignments
(HSPs). A “budget” X is set as a cutoff threshold to terminate extension in either direction from a starting
seed. Specifically, extension continues until the current alignment score has decreased from the maximum
observed thus far by an amount which exceeds X (i.e., X is the maximum-allowed score deficit permitted).
When X is exceeded, the alignment is trimmed back to the base at which the most recent maximal score
was reached. Intuitively, this enables the algorithm to extend from one “island” of high-scoring alignment to
another across (short) regions of dissimilarity.

Phase 3: Evaluation
Once extension has been carried out in both directions from the original seed, a number of high-scoring
local alignments are isolated and evaluated for statistical significance. The statistical theory is known as
Karlin-Altschul statistics. A score threshold S may then be used to separate high-scoring and low-scoring
alignments.

Karlin-Altschul Statistics
Karlin-Altschul statistics are employed to compute p-values for local alignments returned by BLAST, using
the mathematics of random walk theory.

Random Walk Theory
Consider the simple random walk on the set of integers Z. Let a, b ∈ Z be integers such that a < b.

Set the initial position of the random walk at an arbitrary h ∈ Z such that a < h < b. The walk moves
independently of the previous history of the process; i.e., it has the Markov property. It moves to the right
with probability p and to the left with probability q = 1− p, and stops when it reaches either a or b.

Two fundamental questions arise:

1. What is the probability that eventually the walk finishes at b?

3

2. What is the expected number of steps until the walk stops?

Solution to Question 1

Let wh be the probability that the simple random walk eventually ends at b (rather than a), given that its
initial position is h as defined above. wh is the absorption probability for point b. Then a homogeneous
difference equation arises with the following boundary conditions:

wh = pwh+1 + qwh−1

wa = 0

wb = 1

Postulate that this boundary value problem has a solution of the form

wh = eθh

for some constant θ (where e represents the base of the natural logarithm). Then substituting and multiplying
through by eθ−θh yields

eθh = peθ(h+1) + qeθ(h−1)

=⇒ eθ−θheθh = peθ−θheθ(h+1) + qeθ−θheθ(h−1)

=⇒ eθ = pe2θ + q

Letting x = eθ yields a quadratic equation:

px2 − x+ q = 0

This equation has two solutions: x = 1 or x = q
p (to verify this, substitute the values into the equation above

and recall that p+ q = 1). Thus,

eθ = 1 =⇒ θ = 0 =⇒ wh = 1

eθ =
q

p
=⇒ θ = log

(
q

p

)
=⇒ wh = eθ

∗h, where θ∗ = log

(
q

p

)

The latter case is of interest, and there are two possibilities: p = q or p ̸= q. Focusing on the subcase in
which p ̸= q (as p = q is not very interesting in the context of BLAST), the general solution is

wh = c1 + c2e
θ∗h

where c1 and c2 are constants determined by the boundary conditions. These produce

wh =
eθ

∗h − eθ
∗a

eθ∗b − eθ∗a

4

Recalling that wh is the probability that the simple random walk ends at b, let uh be the probability that
the walk ends at a. Since wh + uh = 1, it follows that

uh =
eθ

∗b − eθ
∗h

eθ∗b − eθ∗a

Solution to Question 2

Let mh denote the mean (i.e. expected) number of steps taken until the walk stops.

Solving the following inhomogeneous difference equation:

mh − 1 = pmh+1 + qmh−1

ma = 0

mb = 0

. . . will result in:

mh =
h− a

q − p
−

(
b− a

q − p

)(
eθ

∗h − eθ
∗a

eθ∗b − eθ∗a

)

Karlin-Altschul Statistical Theory
Karlin-Altschul statistical theory rests upon five axioms:

1. A positive score must be possible

2. The expected value of the score must be negative

3. The letters in the sequence of the model are independent and identically distributed (i.i.d.)

4. Sequences are infinitely long

5. Alignments do not contain gaps

The Karlin-Altschul equation is as follows:

E = kmne−λS

where E is the number of alignments with a given score S expected by chance when comparing a query of
length m against a database of size n. λS represents the normalized score of a given alignment, while k is a
fixed normalizing constant.

Log Odds Ratio Scores

The log odds ratio (LOD) score of a pair of amino acids (i, j) is defined as follows:

LOD(i, j) = log2

(
observed frequencies given the data

expected frequencies under the random model

)
The raw score sij is then defined as follows:

sij = log

(
qij
pipj

)
where pi and pj denote the frequencies of amino acids i and j, respectively, qij denotes the observed frequency
of the pair (i, j) given the data, and log indicates the natural logarithm (base e).

5

If the observed frequency qij is equal to the expected frequency pipj , then the LOD is zero. If the LOD is
strictly greater than zero (i.e., qij > pipj), then the pairing of amino acids i and j is common. If the LOD is
strictly less than zero (i.e., qij < pipj), then the pairing of amino acids i and j is unlikely. LOD values are
real numbers, but are rounded to integers to obtain the simpler “raw scores” found in scoring matrices.

PAM and BLOSUM scoring matrices make use of LOD scores to compute the “scores” of alignments between
pairs of amino acids. Target frequencies represent the underlying evolutionary models.

Karlin-Altschul statistical theory states that if a scoring scheme satisfies the first two axioms listed above,
then the scoring scheme has implicit target frequencies. Thus, they are based on log odds scoring schemes.

Target frequencies are given by the values qij . By symmetry, a half-sum of the scoring matrix satisfies

20∑
i=1

i∑
j=1

qij = 1

Analogously to the definition of the raw score sij above, the normalized score is defined as follows:

λSij = log

(
qij
pipj

)

=⇒ qij = pipje
λSij

By substitution, the following condition must hold:

20∑
i=1

i∑
j=1

pipje
λSij = 1

BLAST will solve for λ and present its value in the output report.

The Expected Score of a Scoring Matrix

The expected score of a scoring matrix (E) is the sum of its raw scores weighted by their respective frequencies
of occurrence. (Note that this quantity is distinct from E as given by the Karlin-Altschul equation above).
By axiom 2 above, the expected score must be negative:

E =

20∑
i=1

i∑
j=1

pipjsij < 0

Relative Entropy

The relative entropy (denoted H) of a scoring matrix summarizes the general properties of the matrix. This
value is similar to E, but is calculated from normalized scores instead of raw scores. H is the average number
of bits per position in an alignment, and is always positive:

H = −
20∑
i=1

i∑
j=1

qijλSij

6

Evaluating Alignment Significance

There is a close connection between Karlin-Altschul E-values and p-values:

p = 1− e−E

=⇒ E = − log(1− p)

In particular, for small values (e.g. values ≤ 0.001), p ≈ E.

The Probability Distribution of Alignment Scores

The significance of an alignment is informed by the probability of observing an alignment with the given
score purely by chance. This problem can be formalized under the random walk theory described above.
Since the mean step size (i.e., expected score of aligning two amino acids) is negative, eventually such a
random walk will decrease in score. In the general form of the problem, this implies that a = −1 is the left
endpoint of the interval of interest, b = y ≥ 1 is the arbitrary right endpoint, and h = 0 is the starting point
of the random walk:

-1 0
•

y

Again wh is the quantity of interest: the probability that the random walk eventually reaches some arbitrary
positive score y before the cumulative score becomes negative. With a, h and b as defined above, the equation
takes the form

wh =
1− e−θ∗

eθ∗y − e−θ∗

where θ∗ = log
(

q
p

)
as defined previously. Since θ∗ > 0, the term eθ

∗y dominates the denominator, so

lim
y→∞

wh = (1− e−θ∗
)e−θ∗y

Defining Y as the maximum (positive) score achieved by the walk, the probability distribution is then

P (Y ≥ y) ≈ ce−θ∗y

where c = (1− e−θ∗
).

This probability distribution can be used to compute the likelihood of observing a random alignment of score
y purely by chance.

Let Y1, Y2, . . . be the respective maximum excursion heights of the random walk, relative to the height of
the most recent ladder point in each case. Assume that {Yi} are all independent and identically distributed.
Then Ymax = max({Yi}) is the test statistic for BLAST. Its asymptotic distribution under the null hypothesis
is geometric, as shown above. The probability that Ymax is at most y can be bounded as follows:

e−ne−λy

≤ P (Ymax ≤ y) ≤ e−ne−λ(y+1)

where n is the length of the alignment and λ is the score-normalizing constant defined previously.

This framework demonstrates why the expected score of aligning two amino acids must be negative: if this
were not the case, the random walk could contain arbitrarily long upward increases from ladder points to

7

excursions and the testing procedure would break down. This would essentially reduce BLAST to carrying
out simple global alignment!

The expected length of a max segment pair (MSP) is

E(l) =
log(Kmn)

H

where H is the relative entropy of the scoring matrix. As a heuristic, alignments are generally considered to
be statistically significant if l > E(l). This length is shorter for PAM50 than for PAM250.

Normalized Bit Scores

How long must an alignment be in order to be considered non-random? In general, it needs to be long enough
to achieve significance compared to the “noise” of shorter random alignments; however, it also depends on the
specific scoring matrix employed. In order to compare the significance of alignments obtained from different
databases using different scoring matrices, BLAST make use of normalized bit scores (developed by Karlin
and Altschul), defined as follows:

S′ = λYmax − log(nK)

where K = c
Ae−λ and A is the average distance between ladder points. Then the probability of randomly

observing a given normalized score can be bounded as follows:

e−eλe−s

≤ P (S′ ≤ s) ≤ e−e−s

=⇒ P (S′ ≥ s) ≈ 1− e−e−s

When s is large, the formula above can be approximated further:

P (S′ ≥ s) ≈ e−s

The bit score is closely related to S′:

Sb =
λYmax − logK

log 2

Using this bit score, the Karlin-Altschul equation can be reformulated as follows:

E = mn · 2−Sb

Importantly, this formula for E is independent of K, λ and S itself, which enables direct comparison of
alignment scores obtained using different scoring matrices.

8

